Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems...Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.展开更多
The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing in...The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability.展开更多
Formany years,researchers have explored power allocation(PA)algorithms driven bymodels in wireless networks where multiple-user communications with interference are present.Nowadays,data-driven machine learning method...Formany years,researchers have explored power allocation(PA)algorithms driven bymodels in wireless networks where multiple-user communications with interference are present.Nowadays,data-driven machine learning methods have become quite popular in analyzing wireless communication systems,which among them deep reinforcement learning(DRL)has a significant role in solving optimization issues under certain constraints.To this purpose,in this paper,we investigate the PA problem in a k-user multiple access channels(MAC),where k transmitters(e.g.,mobile users)aim to send an independent message to a common receiver(e.g.,base station)through wireless channels.To this end,we first train the deep Q network(DQN)with a deep Q learning(DQL)algorithm over the simulation environment,utilizing offline learning.Then,the DQN will be used with the real data in the online training method for the PA issue by maximizing the sumrate subjected to the source power.Finally,the simulation results indicate that our proposedDQNmethod provides better performance in terms of the sumrate compared with the available DQL training approaches such as fractional programming(FP)and weighted minimum mean squared error(WMMSE).Additionally,by considering different user densities,we show that our proposed DQN outperforms benchmark algorithms,thereby,a good generalization ability is verified over wireless multi-user communication systems.展开更多
As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the...As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the population in SMO is not abundant.Thus,this paper focuses on how to reconstruct SMO to improve its performance,and a novel spider monkey optimization algorithm with opposition-based learning and orthogonal experimental design(SMO^(3))is developed.A position updatingmethod based on the historical optimal domain and particle swarmfor Local Leader Phase(LLP)andGlobal Leader Phase(GLP)is presented to improve the diversity of the population of SMO.Moreover,an opposition-based learning strategy based on self-extremum is proposed to avoid suffering from premature convergence and getting stuck at locally optimal values.Also,a local worst individual elimination method based on orthogonal experimental design is used for helping the SMO algorithm eliminate the poor individuals in time.Furthermore,an extended SMO^(3)named CSMO^(3)is investigated to deal with constrained optimization problems.The proposed algorithm is applied to both unconstrained and constrained functions which include the CEC2006 benchmark set and three engineering problems.Experimental results show that the performance of the proposed algorithm is better than three well-known SMO algorithms and other evolutionary algorithms in unconstrained and constrained problems.展开更多
Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the tru...Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the true label and the complementary label,and some loss functions have been developed to handle this problem.In this paper,we show that CLL can be transformed into ordinary classification under some mild conditions,which indicates that the complementary labels can supply enough information in most cases.As an example,an extensive misclassification error analysis was performed for the Kernel Ridge Regression(KRR)method applied to multiple complementary-label learning(MCLL),which demonstrates its superior performance compared to existing approaches.展开更多
In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Se...In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users.展开更多
This study presents a layered generalization ensemble model for next generation radio mobiles,focusing on supervised channel estimation approaches.Channel estimation typically involves the insertion of pilot symbols w...This study presents a layered generalization ensemble model for next generation radio mobiles,focusing on supervised channel estimation approaches.Channel estimation typically involves the insertion of pilot symbols with a well-balanced rhythm and suitable layout.The model,called Stacked Generalization for Channel Estimation(SGCE),aims to enhance channel estimation performance by eliminating pilot insertion and improving throughput.The SGCE model incorporates six machine learning methods:random forest(RF),gradient boosting machine(GB),light gradient boosting machine(LGBM),support vector regression(SVR),extremely randomized tree(ERT),and extreme gradient boosting(XGB).By generating meta-data from five models(RF,GB,LGBM,SVR,and ERT),we ensure accurate channel coefficient predictions using the XGB model.To validate themodeling performance,we employ the leave-one-out cross-validation(LOOCV)approach,where each observation serves as the validation set while the remaining observations act as the training set.SGCE performances’results demonstrate higher mean andmedian accuracy compared to the separatedmodel.SGCE achieves an average accuracy of 98.4%,precision of 98.1%,and the highest F1-score of 98.5%,accurately predicting channel coefficients.Furthermore,our proposedmethod outperforms prior traditional and intelligent techniques in terms of throughput and bit error rate.SGCE’s superior performance highlights its efficacy in optimizing channel estimation.It can effectively predict channel coefficients and contribute to enhancing the overall efficiency of radio mobile systems.Through extensive experimentation and evaluation,we demonstrate that SGCE improved performance in channel estimation,surpassing previous techniques.Accordingly,SGCE’s capabilities have significant implications for optimizing channel estimation in modern communication systems.展开更多
As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and effic...As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and efficient solution has not been established in previous work due to the absence of efficient matrix computation and cryptography schemes in the privacy-preserving federated learning model,especially in partially homomorphic cryptosystems.In this paper,we propose a Practical and Efficient Privacy-preserving Federated Learning(PEPFL)framework.First,we present a lifted distributed ElGamal cryptosystem for federated learning,which can solve the multi-key problem in federated learning.Secondly,we develop a Practical Partially Single Instruction Multiple Data(PSIMD)parallelism scheme that can encode a plaintext matrix into single plaintext for encryption,improving the encryption efficiency and reducing the communication cost in partially homomorphic cryptosystem.In addition,based on the Convolutional Neural Network(CNN)and the designed cryptosystem,a novel privacy-preserving federated learning framework is designed by using Momentum Gradient Descent(MGD).Finally,we evaluate the security and performance of PEPFL.The experiment results demonstrate that the scheme is practicable,effective,and secure with low communication and computation costs.展开更多
As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can p...As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.展开更多
In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on obje...In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.展开更多
How to comprehensively,scientifically,objectively and impartially evaluate the multiple learning achievements of the PBL model should be highlighted when PBL is introduced and applied.A questionnaire of a total of 23 ...How to comprehensively,scientifically,objectively and impartially evaluate the multiple learning achievements of the PBL model should be highlighted when PBL is introduced and applied.A questionnaire of a total of 23 items involving such dimensions of language proficiency,subject contents and 21 st Century skills was designed.Its reliability and validity were tested and well-met with the statistical requirements.展开更多
The paper reviewed what the literature has said about learning styles and multiple intelligences. By practicing a personal reflection on learning styles and multiple intelligences, the paper indicated that teachers ne...The paper reviewed what the literature has said about learning styles and multiple intelligences. By practicing a personal reflection on learning styles and multiple intelligences, the paper indicated that teachers need make paradigm shift respecting the fact that every student is gifted and can be taught with the same contents, approaches and assessment. Teaching for diversity should be implemented.展开更多
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom...A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.展开更多
This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the b...This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.展开更多
Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ense...Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ensemble learning algorithm is proposed which has two kinds of weight genes of instances that denote the global distribution and the local distribution. Instead of the repeated sampling method in the standard ensemble learning, non-balance sampling from each station is used to train the base classifier set of each station. The concept of the effective nearby region for local integration classifier is proposed, and is used for the dynamic integration method of multiple classifiers in distributed environment. The experiments show that the ensemble learning algorithm in distributed environment proposed could reduce the time of training the base classifiers effectively, and ensure the classify performance is as same as the centralized learning method.展开更多
Multiple faults are easily confused with single faults.In order to identify multiple faults more accurately,a highly efficient learning method is proposed based on a double parallel two-hidden-layer extreme learning m...Multiple faults are easily confused with single faults.In order to identify multiple faults more accurately,a highly efficient learning method is proposed based on a double parallel two-hidden-layer extreme learning machine,called DPTELM.The DPT-ELM method is a variant of an extreme learning machine(ELM).There are some issues with ELM.First,achieving a high accuracy requires too many hidden nodes;second,the direct connection between the input layer and the output layer is ignored.Accordingly,to deal with the above-mentioned problems,DPT-ELM extends the single-hidden-layer ELM to a two-hidden-layer ELM,which can achieve a desired performance with fewer hidden nodes.In addition,a direct connection is built between the input layer and the output layer.Since the input layer weights and the thresholds of the two hidden layers are determined randomly,this simplifies the improved model and shortens the calculation time.Additionally,to improve the signal to noise ratio(SNR),an adaptive waveform decomposition(AWD)algorithm is used to denoise the vibration signal.Then,the denoised signal is used to extract the eigenvalues by the time-domain and frequency-domain methods.Finally,the eigenvalues are input to the DPT-ELM classifier.In this paper,two groups of rolling bearing data at different speeds,which were collected from a real experimental platform,are used to test the method.Each set of data includes three single fault states,two complex fault states and a healthy state.The experimental results demonstrate that the DPT-ELM method achieves fast learning speed and a high accuracy.Moreover,based on 10-fold cross-validation,it proves to be an effective method to improve the accuracy with fewer hidden nodes.展开更多
Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and ...Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and stability of GTOwill deterioratewhen the optimization problems to be solved becomemore complex and flexible.To overcome these defects and achieve better performance,this paper proposes an improved gorilla troops optimizer(IGTO).First,Circle chaotic mapping is introduced to initialize the positions of gorillas,which facilitates the population diversity and establishes a good foundation for global search.Then,in order to avoid getting trapped in the local optimum,the lens opposition-based learning mechanism is adopted to expand the search ranges.Besides,a novel local search-based algorithm,namely adaptiveβ-hill climbing,is amalgamated with GTO to increase the final solution precision.Attributed to three improvements,the exploration and exploitation capabilities of the basic GTOare greatly enhanced.The performance of the proposed algorithm is comprehensively evaluated and analyzed on 19 classical benchmark functions.The numerical and statistical results demonstrate that IGTO can provide better solution quality,local optimumavoidance,and robustness compared with the basic GTOand five other wellknown algorithms.Moreover,the applicability of IGTOis further proved through resolving four engineering design problems and training multilayer perceptron.The experimental results suggest that IGTO exhibits remarkable competitive performance and promising prospects in real-world tasks.展开更多
This paper proposes how to learn and generate multiple action sequences of a humanoid robot. At first, all the basic action sequences, also called primitive behaviors, are learned by a recurrent neural network with pa...This paper proposes how to learn and generate multiple action sequences of a humanoid robot. At first, all the basic action sequences, also called primitive behaviors, are learned by a recurrent neural network with parametric bias (RNNPB) and the value of the internal nodes which are parametric bias (PB) determining the output with different primitive behaviors are obtained. The training of the RNN uses back propagation through time (BPTT) method. After that, to generate the learned behaviors, or a more complex behavior which is the combination of the primitive behaviors, a reinforcement learning algorithm: Q-learning (QL) is adopt to determine which PB value is adaptive for the generation. Finally, using a real humanoid robot, the proposed method was confirmed its effectiveness by the results of experiment.展开更多
In the existing research at home and abroad,the construction of extracurricular learning platform is still only focused on solving the problems of curriculum learning itself.At the same time,there are no cases of mult...In the existing research at home and abroad,the construction of extracurricular learning platform is still only focused on solving the problems of curriculum learning itself.At the same time,there are no cases of multiple linkage effects,including integrating alumni resources,promoting the construction of alumni association,promoting students'internship and employment,strengthening ties with enterprises and so on.On the basis of the original function of the alumni management system,this paper expands the sections and adds the main body of students to enrich the functions of the platform.This paper constructs a fully-participatory extracurricular learning platform with multiple linkage effect,which provides a reference for other majors inside and outside the school to establish extracurricular learning platform.展开更多
基金funded by Firat University Scientific Research Projects Management Unit for the scientific research project of Feyza AltunbeyÖzbay,numbered MF.23.49.
文摘Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.
基金support from the Ningxia Natural Science Foundation Project(2023AAC03361).
文摘The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability.
文摘Formany years,researchers have explored power allocation(PA)algorithms driven bymodels in wireless networks where multiple-user communications with interference are present.Nowadays,data-driven machine learning methods have become quite popular in analyzing wireless communication systems,which among them deep reinforcement learning(DRL)has a significant role in solving optimization issues under certain constraints.To this purpose,in this paper,we investigate the PA problem in a k-user multiple access channels(MAC),where k transmitters(e.g.,mobile users)aim to send an independent message to a common receiver(e.g.,base station)through wireless channels.To this end,we first train the deep Q network(DQN)with a deep Q learning(DQL)algorithm over the simulation environment,utilizing offline learning.Then,the DQN will be used with the real data in the online training method for the PA issue by maximizing the sumrate subjected to the source power.Finally,the simulation results indicate that our proposedDQNmethod provides better performance in terms of the sumrate compared with the available DQL training approaches such as fractional programming(FP)and weighted minimum mean squared error(WMMSE).Additionally,by considering different user densities,we show that our proposed DQN outperforms benchmark algorithms,thereby,a good generalization ability is verified over wireless multi-user communication systems.
基金supported by the First Batch of Teaching Reform Projects of Zhejiang Higher Education“14th Five-Year Plan”(jg20220434)Special Scientific Research Project for Space Debris and Near-Earth Asteroid Defense(KJSP2020020202)+1 种基金Natural Science Foundation of Zhejiang Province(LGG19F030010)National Natural Science Foundation of China(61703183).
文摘As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the population in SMO is not abundant.Thus,this paper focuses on how to reconstruct SMO to improve its performance,and a novel spider monkey optimization algorithm with opposition-based learning and orthogonal experimental design(SMO^(3))is developed.A position updatingmethod based on the historical optimal domain and particle swarmfor Local Leader Phase(LLP)andGlobal Leader Phase(GLP)is presented to improve the diversity of the population of SMO.Moreover,an opposition-based learning strategy based on self-extremum is proposed to avoid suffering from premature convergence and getting stuck at locally optimal values.Also,a local worst individual elimination method based on orthogonal experimental design is used for helping the SMO algorithm eliminate the poor individuals in time.Furthermore,an extended SMO^(3)named CSMO^(3)is investigated to deal with constrained optimization problems.The proposed algorithm is applied to both unconstrained and constrained functions which include the CEC2006 benchmark set and three engineering problems.Experimental results show that the performance of the proposed algorithm is better than three well-known SMO algorithms and other evolutionary algorithms in unconstrained and constrained problems.
基金Supported by the Indigenous Innovation’s Capability Development Program of Huizhou University(HZU202003,HZU202020)Natural Science Foundation of Guangdong Province(2022A1515011463)+2 种基金the Project of Educational Commission of Guangdong Province(2023ZDZX1025)National Natural Science Foundation of China(12271473)Guangdong Province’s 2023 Education Science Planning Project(Higher Education Special Project)(2023GXJK505)。
文摘Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the true label and the complementary label,and some loss functions have been developed to handle this problem.In this paper,we show that CLL can be transformed into ordinary classification under some mild conditions,which indicates that the complementary labels can supply enough information in most cases.As an example,an extensive misclassification error analysis was performed for the Kernel Ridge Regression(KRR)method applied to multiple complementary-label learning(MCLL),which demonstrates its superior performance compared to existing approaches.
基金supported by the National Natural Science Foundation of China(Grant No.61971057).
文摘In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users.
基金This research project was funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,grant No(43-PRFA-P-58).
文摘This study presents a layered generalization ensemble model for next generation radio mobiles,focusing on supervised channel estimation approaches.Channel estimation typically involves the insertion of pilot symbols with a well-balanced rhythm and suitable layout.The model,called Stacked Generalization for Channel Estimation(SGCE),aims to enhance channel estimation performance by eliminating pilot insertion and improving throughput.The SGCE model incorporates six machine learning methods:random forest(RF),gradient boosting machine(GB),light gradient boosting machine(LGBM),support vector regression(SVR),extremely randomized tree(ERT),and extreme gradient boosting(XGB).By generating meta-data from five models(RF,GB,LGBM,SVR,and ERT),we ensure accurate channel coefficient predictions using the XGB model.To validate themodeling performance,we employ the leave-one-out cross-validation(LOOCV)approach,where each observation serves as the validation set while the remaining observations act as the training set.SGCE performances’results demonstrate higher mean andmedian accuracy compared to the separatedmodel.SGCE achieves an average accuracy of 98.4%,precision of 98.1%,and the highest F1-score of 98.5%,accurately predicting channel coefficients.Furthermore,our proposedmethod outperforms prior traditional and intelligent techniques in terms of throughput and bit error rate.SGCE’s superior performance highlights its efficacy in optimizing channel estimation.It can effectively predict channel coefficients and contribute to enhancing the overall efficiency of radio mobile systems.Through extensive experimentation and evaluation,we demonstrate that SGCE improved performance in channel estimation,surpassing previous techniques.Accordingly,SGCE’s capabilities have significant implications for optimizing channel estimation in modern communication systems.
基金supported by the National Natural Science Foundation of China under Grant No.U19B2021the Key Research and Development Program of Shaanxi under Grant No.2020ZDLGY08-04+1 种基金the Key Technologies R&D Program of He’nan Province under Grant No.212102210084the Innovation Scientists and Technicians Troop Construction Projects of Henan Province.
文摘As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and efficient solution has not been established in previous work due to the absence of efficient matrix computation and cryptography schemes in the privacy-preserving federated learning model,especially in partially homomorphic cryptosystems.In this paper,we propose a Practical and Efficient Privacy-preserving Federated Learning(PEPFL)framework.First,we present a lifted distributed ElGamal cryptosystem for federated learning,which can solve the multi-key problem in federated learning.Secondly,we develop a Practical Partially Single Instruction Multiple Data(PSIMD)parallelism scheme that can encode a plaintext matrix into single plaintext for encryption,improving the encryption efficiency and reducing the communication cost in partially homomorphic cryptosystem.In addition,based on the Convolutional Neural Network(CNN)and the designed cryptosystem,a novel privacy-preserving federated learning framework is designed by using Momentum Gradient Descent(MGD).Finally,we evaluate the security and performance of PEPFL.The experiment results demonstrate that the scheme is practicable,effective,and secure with low communication and computation costs.
文摘As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.
文摘In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.
文摘How to comprehensively,scientifically,objectively and impartially evaluate the multiple learning achievements of the PBL model should be highlighted when PBL is introduced and applied.A questionnaire of a total of 23 items involving such dimensions of language proficiency,subject contents and 21 st Century skills was designed.Its reliability and validity were tested and well-met with the statistical requirements.
文摘The paper reviewed what the literature has said about learning styles and multiple intelligences. By practicing a personal reflection on learning styles and multiple intelligences, the paper indicated that teachers need make paradigm shift respecting the fact that every student is gifted and can be taught with the same contents, approaches and assessment. Teaching for diversity should be implemented.
文摘A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.
基金supported by the National Natural Science Foundation of China(Grant Nos.61071163,61271327,and 61471191)the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics,China(Grant No.BCXJ14-08)+2 种基金the Funding of Innovation Program for Graduate Education of Jiangsu Province,China(Grant No.KYLX 0277)the Fundamental Research Funds for the Central Universities,China(Grant No.3082015NP2015504)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA),China
文摘This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.
基金the Natural Science Foundation of Shaan’xi Province (2005F51).
文摘Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ensemble learning algorithm is proposed which has two kinds of weight genes of instances that denote the global distribution and the local distribution. Instead of the repeated sampling method in the standard ensemble learning, non-balance sampling from each station is used to train the base classifier set of each station. The concept of the effective nearby region for local integration classifier is proposed, and is used for the dynamic integration method of multiple classifiers in distributed environment. The experiments show that the ensemble learning algorithm in distributed environment proposed could reduce the time of training the base classifiers effectively, and ensure the classify performance is as same as the centralized learning method.
基金supported by National Natural Science Foundation of China(51675035/51375037)
文摘Multiple faults are easily confused with single faults.In order to identify multiple faults more accurately,a highly efficient learning method is proposed based on a double parallel two-hidden-layer extreme learning machine,called DPTELM.The DPT-ELM method is a variant of an extreme learning machine(ELM).There are some issues with ELM.First,achieving a high accuracy requires too many hidden nodes;second,the direct connection between the input layer and the output layer is ignored.Accordingly,to deal with the above-mentioned problems,DPT-ELM extends the single-hidden-layer ELM to a two-hidden-layer ELM,which can achieve a desired performance with fewer hidden nodes.In addition,a direct connection is built between the input layer and the output layer.Since the input layer weights and the thresholds of the two hidden layers are determined randomly,this simplifies the improved model and shortens the calculation time.Additionally,to improve the signal to noise ratio(SNR),an adaptive waveform decomposition(AWD)algorithm is used to denoise the vibration signal.Then,the denoised signal is used to extract the eigenvalues by the time-domain and frequency-domain methods.Finally,the eigenvalues are input to the DPT-ELM classifier.In this paper,two groups of rolling bearing data at different speeds,which were collected from a real experimental platform,are used to test the method.Each set of data includes three single fault states,two complex fault states and a healthy state.The experimental results demonstrate that the DPT-ELM method achieves fast learning speed and a high accuracy.Moreover,based on 10-fold cross-validation,it proves to be an effective method to improve the accuracy with fewer hidden nodes.
基金This work is financially supported by the Fundamental Research Funds for the Central Universities under Grant 2572014BB06.
文摘Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and stability of GTOwill deterioratewhen the optimization problems to be solved becomemore complex and flexible.To overcome these defects and achieve better performance,this paper proposes an improved gorilla troops optimizer(IGTO).First,Circle chaotic mapping is introduced to initialize the positions of gorillas,which facilitates the population diversity and establishes a good foundation for global search.Then,in order to avoid getting trapped in the local optimum,the lens opposition-based learning mechanism is adopted to expand the search ranges.Besides,a novel local search-based algorithm,namely adaptiveβ-hill climbing,is amalgamated with GTO to increase the final solution precision.Attributed to three improvements,the exploration and exploitation capabilities of the basic GTOare greatly enhanced.The performance of the proposed algorithm is comprehensively evaluated and analyzed on 19 classical benchmark functions.The numerical and statistical results demonstrate that IGTO can provide better solution quality,local optimumavoidance,and robustness compared with the basic GTOand five other wellknown algorithms.Moreover,the applicability of IGTOis further proved through resolving four engineering design problems and training multilayer perceptron.The experimental results suggest that IGTO exhibits remarkable competitive performance and promising prospects in real-world tasks.
文摘This paper proposes how to learn and generate multiple action sequences of a humanoid robot. At first, all the basic action sequences, also called primitive behaviors, are learned by a recurrent neural network with parametric bias (RNNPB) and the value of the internal nodes which are parametric bias (PB) determining the output with different primitive behaviors are obtained. The training of the RNN uses back propagation through time (BPTT) method. After that, to generate the learned behaviors, or a more complex behavior which is the combination of the primitive behaviors, a reinforcement learning algorithm: Q-learning (QL) is adopt to determine which PB value is adaptive for the generation. Finally, using a real humanoid robot, the proposed method was confirmed its effectiveness by the results of experiment.
文摘In the existing research at home and abroad,the construction of extracurricular learning platform is still only focused on solving the problems of curriculum learning itself.At the same time,there are no cases of multiple linkage effects,including integrating alumni resources,promoting the construction of alumni association,promoting students'internship and employment,strengthening ties with enterprises and so on.On the basis of the original function of the alumni management system,this paper expands the sections and adds the main body of students to enrich the functions of the platform.This paper constructs a fully-participatory extracurricular learning platform with multiple linkage effect,which provides a reference for other majors inside and outside the school to establish extracurricular learning platform.