期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Deep Neural Collaborative Filtering Based Service Recommendation Method with Multi-Source Data for Smart Cloud-Edge Collaboration Applications 被引量:2
1
作者 Wenmin Lin Min Zhu +4 位作者 Xinyi Zhou Ruowei Zhang Xiaoran Zhao Shigen Shen Lu Sun 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第3期897-910,共14页
Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and... Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and rich multi-source big data resources raise challenges to the centralized cloud-based data storage and value mining approaches in terms of economic cost and effective service recommendation methods.In view of these challenges,we propose a deep neural collaborative filtering based service recommendation method with multi-source data(i.e.,NCF-MS)in this paper,which adopts the cloud-edge collaboration computing paradigm to build recommendation model.More specifically,the Stacked Denoising Auto Encoder(SDAE)module is adopted to extract user/service features from auxiliary user profiles and service attributes.The Multiple Layer Perceptron(MLP)module is adopted to integrate the auxiliary user/service features to train the recommendation model.Finally,we evaluate the effectiveness of the NCF-MS method on three public datasets.The experimental results show that our proposed method achieves better performance than existing methods. 展开更多
关键词 deep neural collaborative filtering multi-source data cloud-edge collaboration application stackeddenoising auto encoder multiple layer perceptron
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部