Boosted by a strong solar power market,the electricity grid is exposed to risk under an increasing share of fluctuant solar power.To increase the stability of the electricity grid,an accurate solar power forecast is n...Boosted by a strong solar power market,the electricity grid is exposed to risk under an increasing share of fluctuant solar power.To increase the stability of the electricity grid,an accurate solar power forecast is needed to evaluate such fluctuations.In terms of forecast,solar irradiance is the key factor of solar power generation,which is affected by atmospheric conditions,including surface meteorological variables and column integrated variables.These variables involve multiple numerical timeseries and images.However,few studies have focused on the processing method of multiple data types in an interhour direct normal irradiance(DNI)forecast.In this study,a framework for predicting the DNI for a 10-min time horizon was developed,which included the nondimensionalization of multiple data types and time-series,development of a forecast model,and transformation of the outputs.Several atmospheric variables were considered in the forecast framework,including the historical DNI,wind speed and direction,relative humidity time-series,and ground-based cloud images.Experiments were conducted to evaluate the performance of the forecast framework.The experimental results demonstrate that the proposed method performs well with a normalized mean bias error of 0.41%and a normalized root mean square error(n RMSE)of20.53%,and outperforms the persistent model with an improvement of 34%in the nRMSE.展开更多
A tremendous amount of data has been generated by global financial markets everyday,and such time-series data needs to be analyzed in real time to explore its potential value.In recent years,we have witnessed the succ...A tremendous amount of data has been generated by global financial markets everyday,and such time-series data needs to be analyzed in real time to explore its potential value.In recent years,we have witnessed the successful adoption of machine learning models on financial data,where the importance of accuracy and timeliness demands highly effective computing frameworks.However,traditional financial time-series data processing frameworks have shown performance degradation and adaptation issues,such as the outlier handling with stock suspension in Pandas and TA-Lib.In this paper,we propose HXPY,a high-performance data processing package with a C++/Python interface for financial time-series data.HXPY supports miscellaneous acceleration techniques such as the streaming algorithm,the vectorization instruction set,and memory optimization,together with various functions such as time window functions,group operations,down-sampling operations,cross-section operations,row-wise or column-wise operations,shape transformations,and alignment functions.The results of benchmark and incremental analysis demonstrate the superior performance of HXPY compared with its counterparts.From MiBs to GiBs data,HXPY significantly outperforms other in-memory dataframe computing rivals even up to hundreds of times.展开更多
基金supported by the National Key Research and Development Program of China(No.2018YFB1500803)National Natural Science Foundation of China(No.61773118,No.61703100)Fundamental Research Funds for Central Universities.
文摘Boosted by a strong solar power market,the electricity grid is exposed to risk under an increasing share of fluctuant solar power.To increase the stability of the electricity grid,an accurate solar power forecast is needed to evaluate such fluctuations.In terms of forecast,solar irradiance is the key factor of solar power generation,which is affected by atmospheric conditions,including surface meteorological variables and column integrated variables.These variables involve multiple numerical timeseries and images.However,few studies have focused on the processing method of multiple data types in an interhour direct normal irradiance(DNI)forecast.In this study,a framework for predicting the DNI for a 10-min time horizon was developed,which included the nondimensionalization of multiple data types and time-series,development of a forecast model,and transformation of the outputs.Several atmospheric variables were considered in the forecast framework,including the historical DNI,wind speed and direction,relative humidity time-series,and ground-based cloud images.Experiments were conducted to evaluate the performance of the forecast framework.The experimental results demonstrate that the proposed method performs well with a normalized mean bias error of 0.41%and a normalized root mean square error(n RMSE)of20.53%,and outperforms the persistent model with an improvement of 34%in the nRMSE.
文摘A tremendous amount of data has been generated by global financial markets everyday,and such time-series data needs to be analyzed in real time to explore its potential value.In recent years,we have witnessed the successful adoption of machine learning models on financial data,where the importance of accuracy and timeliness demands highly effective computing frameworks.However,traditional financial time-series data processing frameworks have shown performance degradation and adaptation issues,such as the outlier handling with stock suspension in Pandas and TA-Lib.In this paper,we propose HXPY,a high-performance data processing package with a C++/Python interface for financial time-series data.HXPY supports miscellaneous acceleration techniques such as the streaming algorithm,the vectorization instruction set,and memory optimization,together with various functions such as time window functions,group operations,down-sampling operations,cross-section operations,row-wise or column-wise operations,shape transformations,and alignment functions.The results of benchmark and incremental analysis demonstrate the superior performance of HXPY compared with its counterparts.From MiBs to GiBs data,HXPY significantly outperforms other in-memory dataframe computing rivals even up to hundreds of times.