BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale c...BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19.展开更多
BYD is one of the largest new energy vehicle companies in China.Analyzing its scenario and the factors that affect its value helps to understand and identify development opportunities and potential problems.On one han...BYD is one of the largest new energy vehicle companies in China.Analyzing its scenario and the factors that affect its value helps to understand and identify development opportunities and potential problems.On one hand,this paper makes a qualitative analysis of BYD,using SWOT model to study the internal capability and external environment of BYD.On the other hand,the multiple regression model is used for quantitative analysis of BYD’s enterprise value,and the model is established based on three factors:enterprise fundamentals,investor behavior and psychology,and macroeconomic policy uncertainty,and the stepwise regression is carried out.The results show that the increase of institutional investors’shareholding ratio,the increase of investor sentiment index,and the increase of M2 growth rate will increase the overall enterprise value,while the increase of economic policy uncertainty will decrease the enterprise value.展开更多
BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression an...BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression analysis on the influencing factors of radiation pneumonitis.METHODS Records of 234 patients receiving chest radiotherapy in Huzhou Central Hospital(Huzhou,Zhejiang Province,China)from January 2018 to February 2021,and the patients were divided into either a study group or a control group based on the presence of radiation pneumonitis or not.Among them,93 patients with radiation pneumonitis were included in the study group and 141 without radiation pneumonitis were included in the control group.General characteristics,and radiation and imaging examination data of the two groups were collected and compared.Due to the statistical significance observed,multiple regression analysis was performed on age,tumor type,chemotherapy history,forced vital capacity(FVC),forced expiratory volume in the first second(FEV1),carbon monoxide diffusion volume(DLCO),FEV1/FVC ratio,planned target area(PTV),mean lung dose(MLD),total number of radiation fields,percentage of lung tissue in total lung volume(vdose),probability of normal tissue complications(NTCP),and other factors.RESULTS The proportions of patients aged≥60 years and those with the diagnosis of lung cancer and a history of chemotherapy in the study group were higher than those in the control group(P<0.05);FEV1,DLCO,and FEV1/FVC ratio in the study group were lower than those in the control group(P<0.05),while PTV,MLD,total field number,vdose,and NTCP were higher than in the control group(P<0.05).Logistic regression analysis showed that age,lung cancer diagnosis,chemotherapy history,FEV1,FEV1/FVC ratio,PTV,MLD,total number of radiation fields,vdose,and NTCP were risk factors for radiation pneumonitis.CONCLUSION We have identified patient age,type of lung cancer,history of chemotherapy,lung function,and radiotherapy parameters as risk factors for radiation pneumonitis.Comprehensive evaluation and examination should be carried out before radiotherapy to effectively prevent radiation pneumonitis.展开更多
Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple...Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.展开更多
Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods trea...Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods treat covariates, either time-invariant or time-varying, as having multiplicative effects while general dependence on time is left un-estimated. An adaptive approach is formulated for analyzing multiple event time data. Conditional hazard rates are modeled in terms of dependence on both time and covariates using fractional polynomials restricted so that the conditional hazard rates are positive-valued and so that excess time probability functions (generalizing survival functions for single event times) are decreasing. Maximum likelihood is used to estimate parameters adjusting for right censored event times. Likelihood cross-validation (LCV) scores are used to compare models. Adaptive searches through alternate conditional hazard rate models are controlled by LCV scores combined with tolerance parameters. These searches identify effective models for the underlying multiple event time data. Conditional hazard regression is demonstrated using data on times between tumor recurrence for bladder cancer patients. Analyses of theory-based models for these data using extensions of Cox regression provide conflicting results on effects to treatment group and the initial number of tumors. On the other hand, fractional polynomial analyses of these theory-based models provide consistent results identifying significant effects to treatment group and initial number of tumors using both model-based and robust empirical tests. Adaptive analyses further identify distinct moderation by group of the effect of tumor order and an additive effect to group after controlling for nonlinear effects to initial number of tumors and tumor order. Results of example analyses indicate that adaptive conditional hazard rate modeling can generate useful insights into multiple event time data.展开更多
Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods trea...Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods treat covariates, either time-invariant or time-varying, as having multiplicative effects while general dependence on time is left un-estimated. An adaptive approach is formulated for analyzing multiple event time data. Conditional hazard rates are modeled in terms of dependence on both time and covariates using fractional polynomials restricted so that the conditional hazard rates are positive-valued and so that excess time probability functions (generalizing survival functions for single event times) are decreasing. Maximum likelihood is used to estimate parameters adjusting for right censored event times. Likelihood cross-validation (LCV) scores are used to compare models. Adaptive searches through alternate conditional hazard rate models are controlled by LCV scores combined with tolerance parameters. These searches identify effective models for the underlying multiple event time data. Conditional hazard regression is demonstrated using data on times between tumor recurrence for bladder cancer patients. Analyses of theory-based models for these data using extensions of Cox regression provide conflicting results on effects to treatment group and the initial number of tumors. On the other hand, fractional polynomial analyses of these theory-based models provide consistent results identifying significant effects to treatment group and initial number of tumors using both model-based and robust empirical tests. Adaptive analyses further identify distinct moderation by group of the effect of tumor order and an additive effect to group after controlling for nonlinear effects to initial number of tumors and tumor order. Results of example analyses indicate that adaptive conditional hazard rate modeling can generate useful insights into multiple event time data.展开更多
In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperature...In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.展开更多
Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence s...Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.展开更多
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ...Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Aim New statistical method was applied in data analysis of orthogonal experiments to optimize the preparation of liposome. Method Particle size, zeta potential, encapsulation efficiency and physical stability of lipos...Aim New statistical method was applied in data analysis of orthogonal experiments to optimize the preparation of liposome. Method Particle size, zeta potential, encapsulation efficiency and physical stability of liposomes were selected by orthogonal design as evaluating indicators. Through three statistical methods (direct observation, variance analysis and stepwise multiple regression), the optimized preparing conditions were acquired and validated by experiment. Results All of the four indicators were different by these analyses. The validation experiments indicated that the optimized conditions by stepwise multiple regressions were better than that by traditional analysis. Conclusion Experiment results suggested that multiple regressions could avoid the weakness of direct observation and variance analysis, but more work should be done in preparing liposomes.展开更多
Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used ...Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used tool to build prediction models in swine nutrition,while the artificial neural networks(ANN)model is reported to be more accurate than MR model in prediction performance.Therefore,the potential of ANN models in predicting the growth performance of pigs was evaluated and compared with MR models in this study.Results:Body weight(BW),net energy(NE)intake,standardized ileal digestible lysine(SID Lys)intake,and their quadratic terms were selected as input variables to predict ADG and F/G among 10 candidate variables.In the training phase,MR models showed high accuracy in both ADG and F/G prediction(R^(2)_(ADG)=0.929,R^(2)_(F/G)=0.886)while ANN models with 4,6 neurons and radial basis activation function yielded the best performance in ADG and F/G prediction(R^(2)_(ADG)=0.964,R^(2)_(F/G)=0.932).In the testing phase,these ANN models showed better accuracy in ADG prediction(CCC:0.976 vs.0.861,R^(2):0.951 vs.0.584),and F/G prediction(CCC:0.952 vs.0.900,R^(2):0.905 vs.0.821)compared with the MR models.Meanwhile,the“over-fitting”occurred in MR models but not in ANN models.On validation data from the animal trial,ANN models exhibited superiority over MR models in both ADG and F/G prediction(P<0.01).Moreover,the growth stages have a significant effect on the prediction accuracy of the models.Conclusion:Body weight,NE intake and SID Lys intake can be used as input variables to predict the growth performance of growing-finishing pigs,with trained ANN models are more flexible and accurate than MR models.Therefore,it is promising to use ANN models in related swine nutrition studies in the future.展开更多
In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regre...In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems.展开更多
In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups o...In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups of agent were tested,respectively.It is found that these two experimental design methods show drawbacks,that is,the amount of agent is difficult to determine,and the results are not fully optimized.Therefore,multiple regression experimental method was used to design experimental formula.By randomly selecting arbitrary agent with the amount within the recommended range,17 groups of drilling fluid formula were designed,and the plastic viscosity of each experiment formula was measured.Set plastic viscosity as the objective function,through multiple regressions,then quadratic regression model is obtained,whose correlation coefficient meets the requirement.Set target values of plastic viscosity to be 18,20 and 22 mPa·s,respectively,with the trial method,5 drilling fluid formulas are obtained with accuracy of 0.000 3,0.000 1 and 0.000 3.Arbitrarily select target value of each of the two groups under the formula for experimental verification of drilling fluid,then the measurement errors between theoretical and tested plastic viscosity are less than 5%,confirming that regression model can be applied to optimizing the circulating of plastic-foam drilling fluid viscosity.In accordance with the precision of different formulations of drilling fluid for other constraints,the methods result in the optimization of the circulating micro-bubble drilling fluid parameters.展开更多
Shear wave velocity has numerous applications in geomechanical, petrophysical and geophysical studies of hydrocarbon reserves. However, data related to shear wave velocity isn’t available for all wells, especially ol...Shear wave velocity has numerous applications in geomechanical, petrophysical and geophysical studies of hydrocarbon reserves. However, data related to shear wave velocity isn’t available for all wells, especially old wells and it is very important to estimate this parameter using other well logging. Hence, lots of methods have been developed to estimate these data using other available information of reservoir. In this study, after processing and removing inappropriate petrophysical data, we estimated petrophysical properties affecting shear wave velocity of the reservoir and statistical methods were used to establish relationship between effective petrophysical properties and shear wave velocity. To predict (VS), first we used empirical relationships and then multivariate regression methods and neural networks were used. Multiple regression method is a powerful method that uses correlation between available information and desired parameter. Using this method, we can identify parameters affecting estimation of shear wave velocity. Neural networks can also be trained quickly and present a stable model for predicting shear wave velocity. For this reason, this method is known as “dynamic regression” compared with multiple regression. Neural network used in this study is not like a black box because we have used the results of multiple regression that can easily modify prediction of shear wave velocity through appropriate combination of data. The same information that was intended for multiple regression was used as input in neural networks, and shear wave velocity was obtained using compressional wave velocity and well logging data (neutron, density, gamma and deep resistivity) in carbonate rocks. The results show that methods applied in this carbonate reservoir was successful, so that shear wave velocity was predicted with about 92 and 95 percents of correlation coefficient in multiple regression and neural network method, respectively. Therefore, we propose using these methods to estimate shear wave velocity in wells without this parameter.展开更多
Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated wa...Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated water. This study focuses on the application of statistical techniques, Multiple Linear Regression model and MANOVA to assess health impacts due to pollution in Cauvery river stretch in Srirangapatna. In this study, using Multiple Linear Regression, it is found that health impact level is 60.8% dependent on water quality parameters of BOD, COD, TDS, TC and FC. The t-statistics and their associated 2-tailed p-values indicate that COD and TDS produces health impacts compared to BOD, TC and FC, when their effects are put together across all the six sampling stations in Srirangapatna. Further Pearson correlation Matrix shows highly significant positive correlation amongst parameters across all stations indicating possibility of common sources of origin that might be anthropogenic. Also graphs are plotted for individual parameters across all stations and it reveals that COD and TDS values are significant across all sampling stations, though their values are higher in impact stations, causing health impacts.展开更多
Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttin...Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttings concentration in the wellbore annulus as a function of operational drilling parameters such as wellbore geometry, pumping rate, drilling fluid rheology and density and maximum drilling rate is very important for optimizing these parameters. This paper describes a simple and more reliable artificial neural network (ANN) method and multiple linear regression (MLR) to predict cuttings concentration during foam drilling operation. This model is applicable for various borehole conditions using some critical parameters associated with foam velocity, foam quality, hole geometry, subsurface condition (pressure and temperature) and pipe rotation. The average absolute percent relative error (AAPE) between the experimental cuttings concentration and ANN model is less than 6%, and using MLR, AAPE is less than 9%. A comparison of the ANN and mechanistic model was done. The AAPE values for all datasets in this study were 3.2%, 8.5% and 10.3% for ANN model, MLR model and mechanistic model respectively. The results show high ability of ANN in prediction with respect to statistical methods.展开更多
The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boul...The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boulder produced in blasting operations of Golegohar iron ore open pit mine,Iran was predicted via multiple regression method and artificial neural networks.Results of 33 blasts in the mine were collected for modeling.Input variables were:joints spacing,density and uniaxial compressive strength of the intact rock,burden,spacing,stemming,bench height to burden ratio,and specific charge.The dependent variable was ratio of boulder volume to pattern volume.Both techniques were successful in predicting the ratio.In this study,the multiple regression method was superior with coefficient of determination and root mean squared error values of 0.89 and 0.19,respectively.展开更多
文摘BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19.
文摘BYD is one of the largest new energy vehicle companies in China.Analyzing its scenario and the factors that affect its value helps to understand and identify development opportunities and potential problems.On one hand,this paper makes a qualitative analysis of BYD,using SWOT model to study the internal capability and external environment of BYD.On the other hand,the multiple regression model is used for quantitative analysis of BYD’s enterprise value,and the model is established based on three factors:enterprise fundamentals,investor behavior and psychology,and macroeconomic policy uncertainty,and the stepwise regression is carried out.The results show that the increase of institutional investors’shareholding ratio,the increase of investor sentiment index,and the increase of M2 growth rate will increase the overall enterprise value,while the increase of economic policy uncertainty will decrease the enterprise value.
文摘BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression analysis on the influencing factors of radiation pneumonitis.METHODS Records of 234 patients receiving chest radiotherapy in Huzhou Central Hospital(Huzhou,Zhejiang Province,China)from January 2018 to February 2021,and the patients were divided into either a study group or a control group based on the presence of radiation pneumonitis or not.Among them,93 patients with radiation pneumonitis were included in the study group and 141 without radiation pneumonitis were included in the control group.General characteristics,and radiation and imaging examination data of the two groups were collected and compared.Due to the statistical significance observed,multiple regression analysis was performed on age,tumor type,chemotherapy history,forced vital capacity(FVC),forced expiratory volume in the first second(FEV1),carbon monoxide diffusion volume(DLCO),FEV1/FVC ratio,planned target area(PTV),mean lung dose(MLD),total number of radiation fields,percentage of lung tissue in total lung volume(vdose),probability of normal tissue complications(NTCP),and other factors.RESULTS The proportions of patients aged≥60 years and those with the diagnosis of lung cancer and a history of chemotherapy in the study group were higher than those in the control group(P<0.05);FEV1,DLCO,and FEV1/FVC ratio in the study group were lower than those in the control group(P<0.05),while PTV,MLD,total field number,vdose,and NTCP were higher than in the control group(P<0.05).Logistic regression analysis showed that age,lung cancer diagnosis,chemotherapy history,FEV1,FEV1/FVC ratio,PTV,MLD,total number of radiation fields,vdose,and NTCP were risk factors for radiation pneumonitis.CONCLUSION We have identified patient age,type of lung cancer,history of chemotherapy,lung function,and radiotherapy parameters as risk factors for radiation pneumonitis.Comprehensive evaluation and examination should be carried out before radiotherapy to effectively prevent radiation pneumonitis.
文摘Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.
文摘Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods treat covariates, either time-invariant or time-varying, as having multiplicative effects while general dependence on time is left un-estimated. An adaptive approach is formulated for analyzing multiple event time data. Conditional hazard rates are modeled in terms of dependence on both time and covariates using fractional polynomials restricted so that the conditional hazard rates are positive-valued and so that excess time probability functions (generalizing survival functions for single event times) are decreasing. Maximum likelihood is used to estimate parameters adjusting for right censored event times. Likelihood cross-validation (LCV) scores are used to compare models. Adaptive searches through alternate conditional hazard rate models are controlled by LCV scores combined with tolerance parameters. These searches identify effective models for the underlying multiple event time data. Conditional hazard regression is demonstrated using data on times between tumor recurrence for bladder cancer patients. Analyses of theory-based models for these data using extensions of Cox regression provide conflicting results on effects to treatment group and the initial number of tumors. On the other hand, fractional polynomial analyses of these theory-based models provide consistent results identifying significant effects to treatment group and initial number of tumors using both model-based and robust empirical tests. Adaptive analyses further identify distinct moderation by group of the effect of tumor order and an additive effect to group after controlling for nonlinear effects to initial number of tumors and tumor order. Results of example analyses indicate that adaptive conditional hazard rate modeling can generate useful insights into multiple event time data.
文摘Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods treat covariates, either time-invariant or time-varying, as having multiplicative effects while general dependence on time is left un-estimated. An adaptive approach is formulated for analyzing multiple event time data. Conditional hazard rates are modeled in terms of dependence on both time and covariates using fractional polynomials restricted so that the conditional hazard rates are positive-valued and so that excess time probability functions (generalizing survival functions for single event times) are decreasing. Maximum likelihood is used to estimate parameters adjusting for right censored event times. Likelihood cross-validation (LCV) scores are used to compare models. Adaptive searches through alternate conditional hazard rate models are controlled by LCV scores combined with tolerance parameters. These searches identify effective models for the underlying multiple event time data. Conditional hazard regression is demonstrated using data on times between tumor recurrence for bladder cancer patients. Analyses of theory-based models for these data using extensions of Cox regression provide conflicting results on effects to treatment group and the initial number of tumors. On the other hand, fractional polynomial analyses of these theory-based models provide consistent results identifying significant effects to treatment group and initial number of tumors using both model-based and robust empirical tests. Adaptive analyses further identify distinct moderation by group of the effect of tumor order and an additive effect to group after controlling for nonlinear effects to initial number of tumors and tumor order. Results of example analyses indicate that adaptive conditional hazard rate modeling can generate useful insights into multiple event time data.
基金Project(51275414)supported by the National Natural Science Foundation of ChinaProject(2015JM5204)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(Z2015064)supported by the Graduate Starting Seed Fund of the Northwestern Polytechnical University,ChinaProject(130-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.
文摘Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.
基金The National Natural Science Foundation of China under contract No.11174235the Science and Technology Development Project of Shaanxi Province of China under contract No.2010KJXX-02+2 种基金the Program for New Century Excellent Talents in University of China under contract No. NCET-08-0455the Science and Technology Innovation Foundation of Northwestern Polytechnical University of Chinathe Doctorate Foundation of Northwestern Polytechnical University of China under contract No.CX201226.
文摘Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
文摘Aim New statistical method was applied in data analysis of orthogonal experiments to optimize the preparation of liposome. Method Particle size, zeta potential, encapsulation efficiency and physical stability of liposomes were selected by orthogonal design as evaluating indicators. Through three statistical methods (direct observation, variance analysis and stepwise multiple regression), the optimized preparing conditions were acquired and validated by experiment. Results All of the four indicators were different by these analyses. The validation experiments indicated that the optimized conditions by stepwise multiple regressions were better than that by traditional analysis. Conclusion Experiment results suggested that multiple regressions could avoid the weakness of direct observation and variance analysis, but more work should be done in preparing liposomes.
基金funded by the National Natural Science Foundation of China(32072764, 31702121)the 2115 Talent Development Program of China Agricultural UniversityNational Key Research and Development Program of China (2019YFD1002605)
文摘Backgrounds:Evaluating the growth performance of pigs in real-time is laborious and expensive,thus mathematical models based on easily accessible variables are developed.Multiple regression(MR)is the most widely used tool to build prediction models in swine nutrition,while the artificial neural networks(ANN)model is reported to be more accurate than MR model in prediction performance.Therefore,the potential of ANN models in predicting the growth performance of pigs was evaluated and compared with MR models in this study.Results:Body weight(BW),net energy(NE)intake,standardized ileal digestible lysine(SID Lys)intake,and their quadratic terms were selected as input variables to predict ADG and F/G among 10 candidate variables.In the training phase,MR models showed high accuracy in both ADG and F/G prediction(R^(2)_(ADG)=0.929,R^(2)_(F/G)=0.886)while ANN models with 4,6 neurons and radial basis activation function yielded the best performance in ADG and F/G prediction(R^(2)_(ADG)=0.964,R^(2)_(F/G)=0.932).In the testing phase,these ANN models showed better accuracy in ADG prediction(CCC:0.976 vs.0.861,R^(2):0.951 vs.0.584),and F/G prediction(CCC:0.952 vs.0.900,R^(2):0.905 vs.0.821)compared with the MR models.Meanwhile,the“over-fitting”occurred in MR models but not in ANN models.On validation data from the animal trial,ANN models exhibited superiority over MR models in both ADG and F/G prediction(P<0.01).Moreover,the growth stages have a significant effect on the prediction accuracy of the models.Conclusion:Body weight,NE intake and SID Lys intake can be used as input variables to predict the growth performance of growing-finishing pigs,with trained ANN models are more flexible and accurate than MR models.Therefore,it is promising to use ANN models in related swine nutrition studies in the future.
基金Project F010206 supported by the National Natural Science Foundation of China
文摘In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems.
基金Project(50304010) supported by the National Natural Science Foundation of China
文摘In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups of agent were tested,respectively.It is found that these two experimental design methods show drawbacks,that is,the amount of agent is difficult to determine,and the results are not fully optimized.Therefore,multiple regression experimental method was used to design experimental formula.By randomly selecting arbitrary agent with the amount within the recommended range,17 groups of drilling fluid formula were designed,and the plastic viscosity of each experiment formula was measured.Set plastic viscosity as the objective function,through multiple regressions,then quadratic regression model is obtained,whose correlation coefficient meets the requirement.Set target values of plastic viscosity to be 18,20 and 22 mPa·s,respectively,with the trial method,5 drilling fluid formulas are obtained with accuracy of 0.000 3,0.000 1 and 0.000 3.Arbitrarily select target value of each of the two groups under the formula for experimental verification of drilling fluid,then the measurement errors between theoretical and tested plastic viscosity are less than 5%,confirming that regression model can be applied to optimizing the circulating of plastic-foam drilling fluid viscosity.In accordance with the precision of different formulations of drilling fluid for other constraints,the methods result in the optimization of the circulating micro-bubble drilling fluid parameters.
文摘Shear wave velocity has numerous applications in geomechanical, petrophysical and geophysical studies of hydrocarbon reserves. However, data related to shear wave velocity isn’t available for all wells, especially old wells and it is very important to estimate this parameter using other well logging. Hence, lots of methods have been developed to estimate these data using other available information of reservoir. In this study, after processing and removing inappropriate petrophysical data, we estimated petrophysical properties affecting shear wave velocity of the reservoir and statistical methods were used to establish relationship between effective petrophysical properties and shear wave velocity. To predict (VS), first we used empirical relationships and then multivariate regression methods and neural networks were used. Multiple regression method is a powerful method that uses correlation between available information and desired parameter. Using this method, we can identify parameters affecting estimation of shear wave velocity. Neural networks can also be trained quickly and present a stable model for predicting shear wave velocity. For this reason, this method is known as “dynamic regression” compared with multiple regression. Neural network used in this study is not like a black box because we have used the results of multiple regression that can easily modify prediction of shear wave velocity through appropriate combination of data. The same information that was intended for multiple regression was used as input in neural networks, and shear wave velocity was obtained using compressional wave velocity and well logging data (neutron, density, gamma and deep resistivity) in carbonate rocks. The results show that methods applied in this carbonate reservoir was successful, so that shear wave velocity was predicted with about 92 and 95 percents of correlation coefficient in multiple regression and neural network method, respectively. Therefore, we propose using these methods to estimate shear wave velocity in wells without this parameter.
文摘Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated water. This study focuses on the application of statistical techniques, Multiple Linear Regression model and MANOVA to assess health impacts due to pollution in Cauvery river stretch in Srirangapatna. In this study, using Multiple Linear Regression, it is found that health impact level is 60.8% dependent on water quality parameters of BOD, COD, TDS, TC and FC. The t-statistics and their associated 2-tailed p-values indicate that COD and TDS produces health impacts compared to BOD, TC and FC, when their effects are put together across all the six sampling stations in Srirangapatna. Further Pearson correlation Matrix shows highly significant positive correlation amongst parameters across all stations indicating possibility of common sources of origin that might be anthropogenic. Also graphs are plotted for individual parameters across all stations and it reveals that COD and TDS values are significant across all sampling stations, though their values are higher in impact stations, causing health impacts.
文摘Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttings concentration in the wellbore annulus as a function of operational drilling parameters such as wellbore geometry, pumping rate, drilling fluid rheology and density and maximum drilling rate is very important for optimizing these parameters. This paper describes a simple and more reliable artificial neural network (ANN) method and multiple linear regression (MLR) to predict cuttings concentration during foam drilling operation. This model is applicable for various borehole conditions using some critical parameters associated with foam velocity, foam quality, hole geometry, subsurface condition (pressure and temperature) and pipe rotation. The average absolute percent relative error (AAPE) between the experimental cuttings concentration and ANN model is less than 6%, and using MLR, AAPE is less than 9%. A comparison of the ANN and mechanistic model was done. The AAPE values for all datasets in this study were 3.2%, 8.5% and 10.3% for ANN model, MLR model and mechanistic model respectively. The results show high ability of ANN in prediction with respect to statistical methods.
文摘The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boulder produced in blasting operations of Golegohar iron ore open pit mine,Iran was predicted via multiple regression method and artificial neural networks.Results of 33 blasts in the mine were collected for modeling.Input variables were:joints spacing,density and uniaxial compressive strength of the intact rock,burden,spacing,stemming,bench height to burden ratio,and specific charge.The dependent variable was ratio of boulder volume to pattern volume.Both techniques were successful in predicting the ratio.In this study,the multiple regression method was superior with coefficient of determination and root mean squared error values of 0.89 and 0.19,respectively.