Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this...Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this continuous changes in generation condition, the fault current level in network will be affected, this changes in fault current level will affect in the coordination between protection relays and to keep the coordination at right way, an adaptive protection system is required that can adaptive its setting according to generation changes, the fault current level in each case is evaluated using ETAP software, and the required relay setting in each case is also evaluated using Grey Wolf Optimizer (GWO) algorithm, and to select suitable setting which required in each condition, to select the active setting group of protection relay according to generation capacity, central protection unite can be used, and to improve protection stability and minimizing relays tripping time, a proposed method for selecting suitable backup relay is used, which leads to decrease relays tripping time and increase system stability, output settings for relays in all cases achieved our constrains.展开更多
Cooperative diversity is one of the most effective ways to mitigate the fading effect of wireless channels and obtain the spatial gain in wireless networks. In this paper, an optimal power allocation (OPA) scheme fo...Cooperative diversity is one of the most effective ways to mitigate the fading effect of wireless channels and obtain the spatial gain in wireless networks. In this paper, an optimal power allocation (OPA) scheme for a cooperative communication system using the amplify-and-forward (AF) transmit strategy with multiple relay users is proposed by minimizing the bit-error-rate (BER) at the destination under the constraint of the total transmit power of both the source user and the relay users. Simutation resutts indicate that the proposed power allocation method can achieve significant BER performance improvement than using the equal power allocation (EPA) scheme, while still attains low complexity. The system performance is improved significantly with the increasing of the number of relay users at high signal-noise ratio (SNR). However, at low SNR, the system performance decreases when the relay number increases. Thus, an adaptive relay selection scheme may be used to choose the appropriate relay numbers in different transmission scenarios to provide system performance improvement and keep the power allocation scheme with low complexity.展开更多
In this paper,a two-way relay system which achieves bi-directional communication via a multiple-antenna relay in two time slots is studied.In the multiple access(MA) phase,the novel receive schemes based on Dempster-S...In this paper,a two-way relay system which achieves bi-directional communication via a multiple-antenna relay in two time slots is studied.In the multiple access(MA) phase,the novel receive schemes based on Dempster-Shafer(D-S) evidence theory are proposed at the relay node.Instead of traditional linear detection,the first proposed MIMO-DS NC scheme adopts D-S evidence theory to detect the signals of each source node before mapping them into network-coded signal.Moreover,different from traditional physical-layer network coding(PNC) based on virtual MIMO model,the further proposed MIMO-DS PNC comes from the vector space perspective and combines PNC mapping with D-S theory to obtain network-coded signal without estimating each source node signal.D-S theory can appropriately characterize uncertainty and make full use of multiple evidence source information by Dempster's combination rule to obtain reliable decisions.In the broadcast(BC) phase,the space-time coding(STC) and antenna selection(AS) schemes are adopted to achieve transmit diversity.Simulation results reveal that the STC and AS schemes both achieve full transmit diversity in the BC phase and the proposed MIMO-DS NC/PNC schemes obtain better end-to-end BER performance and throughputs compared with traditional schemes with a little complexity increasing and no matter which scheme is adopted in the BC phase,MIMO-DS PNC always achieves full end-to-end diversity gain as MIMO-ML NC but with a lower complexity and its throughput approaches the throughput of MIMO-ML NC in high SNR regime.展开更多
Joint sub-optimization of cooperative relays in Multiple-Input and Multiple-Output (MIMO) multiple relays aided communication system is discussed in this paper. Because the instantaneous channel state information of a...Joint sub-optimization of cooperative relays in Multiple-Input and Multiple-Output (MIMO) multiple relays aided communication system is discussed in this paper. Because the instantaneous channel state information of all source-relay channels and all relay-user channels is difficult to get at each relay node, an unjoined solution is designed according to the channel state information of that relay only. Then a multi-user loading algorithm is proposed to utilize the space diversity through multi-relay transmission. The simulation results show that with the newly proposed multi-user loading algorithm, the unjoined solution can achieve better system performance comparing with joint one in low SNR. However, the complexity of the former is much lower, for only partial CSI is needed.展开更多
This paper investigates the effects of the outdated channel state information(CSI)on the secrecy performance of an underlay spectrum sharing cognitive radio networks(CRNs),where the secondary user(SU)source node(Alice...This paper investigates the effects of the outdated channel state information(CSI)on the secrecy performance of an underlay spectrum sharing cognitive radio networks(CRNs),where the secondary user(SU)source node(Alice)aims to transmit the trusted messages to the full-duplex(FD)aided SU receiver(Bob)with the assistance of cooperative relay(Relay).Considering the impact of feedback delay,outdated CSI will aggravate the system performance.To tackle such challenge,the collaborative zero-forcing beamforming(ZFB)scheme of FD technique is further introduced to implement jamming so as to confuse the eavesdropping and improve the security performance of the system.Under such setup,the exact and asymptotic expressions of the secrecy outage probability(SOP)under the outdated CSI case are derived,respectively.The results reveal that i)the outdated CSI of the SU transmission channel will decrease the diversity gain from min(NANR,NRNB)to NRwith NA,NRand NBbeing the number of antennas of Alice,Relay and Bob,respectively,ii)the introduction of FD technique can improve coding gain and enhance system performance.展开更多
In order to improve link performance of future wireless relay networks,a network coding scheme with linear block codes was proposed,which could be deployed in a relay network consisting of multi-source sending data to...In order to improve link performance of future wireless relay networks,a network coding scheme with linear block codes was proposed,which could be deployed in a relay network consisting of multi-source sending data to a common base station(BS) with the assistance of one relay node.At BS,an iterative decoding structure between one cooperative decoder and a number of single-source decoders was established using the relayed network codes and source codes.Further,the extrinsic information transfer(EXIT) chart technique was used to predict and analyze the convergence behavior of iterative decoder.The analysis and simulation results show that the bit error ratio(BER) performance of the proposed scheme outperforms reference scheme under different relay network coding matrices.Compared with a reference scheme without the multisource cooperation,the proposed scheme can obtain network coding gain from the relay network while not reduce its code rate.展开更多
In this study,we investigate the relay selection(RS)problem in full-duplex energy-harvesting(FDEH)relay networks,where the relays are wirelessly powered by harvesting a portion of the received signal power from the so...In this study,we investigate the relay selection(RS)problem in full-duplex energy-harvesting(FDEH)relay networks,where the relays are wirelessly powered by harvesting a portion of the received signal power from the source.We extend the investigation of the relay selection problem in FDEH relay networks to enable multiple relays to be selected simultaneously for improved performance.This is in contrast with existing studies on RS in similar setups,where only one relay can be selected in a transmission cycle.Our simulations show that selecting only a single relay is not always optimal,especially at low signal-to-noise ratios(SNRs).Furthermore,in this paper,we present the design of a greedy RS method with quadratic complexity for FDEH relay networks.Compared with the exhaustive-search-based RS,the proposed greedy RS achieves near-optimum performance in terms of the end-to-end capacity with significantly reduced complexity.展开更多
This article studies the closed-form expressions of outage performance for opportunistic relay under aggregate power constraint in decode-and-forward (DF) relay networks over Rayleigh fading channels, assuming that ...This article studies the closed-form expressions of outage performance for opportunistic relay under aggregate power constraint in decode-and-forward (DF) relay networks over Rayleigh fading channels, assuming that multiple antennas are available at the relay node. According to whether instantaneous signal-to-noise ratio (SNR) or average SNR can be utilized for relay selection, two opportunistic relay schemes, opportunistic multi-antenna relay selection (OMRS) and average best relay selection (ABRS) are proposed. The performances of both two schemes are evaluated by means of theoretical analysis and simulation, it is observed that OMRS is outage-optimal among multi-antenna relay selection schemes and closely approaches the beamforming (BF) scheme known as theoretical outage-optimal. Compared with previous single-antenna opportunistic relaying (OR) scheme, OMRS brings remarkable performance improvement, which is obtained from maximum ratio combining (MRC) and beamforming techniques. It is also shown that the performance of ABRS in asymmetric channels is close to OMRS in the low and median SNR range.展开更多
文摘Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this continuous changes in generation condition, the fault current level in network will be affected, this changes in fault current level will affect in the coordination between protection relays and to keep the coordination at right way, an adaptive protection system is required that can adaptive its setting according to generation changes, the fault current level in each case is evaluated using ETAP software, and the required relay setting in each case is also evaluated using Grey Wolf Optimizer (GWO) algorithm, and to select suitable setting which required in each condition, to select the active setting group of protection relay according to generation capacity, central protection unite can be used, and to improve protection stability and minimizing relays tripping time, a proposed method for selecting suitable backup relay is used, which leads to decrease relays tripping time and increase system stability, output settings for relays in all cases achieved our constrains.
基金supported by the National Natural Science Foundation of China (60972055)the Shanghai Educational Development Foundation (09CG40)the Science and Technology Commission of Shanghai Municipality (10220710300)
文摘Cooperative diversity is one of the most effective ways to mitigate the fading effect of wireless channels and obtain the spatial gain in wireless networks. In this paper, an optimal power allocation (OPA) scheme for a cooperative communication system using the amplify-and-forward (AF) transmit strategy with multiple relay users is proposed by minimizing the bit-error-rate (BER) at the destination under the constraint of the total transmit power of both the source user and the relay users. Simutation resutts indicate that the proposed power allocation method can achieve significant BER performance improvement than using the equal power allocation (EPA) scheme, while still attains low complexity. The system performance is improved significantly with the increasing of the number of relay users at high signal-noise ratio (SNR). However, at low SNR, the system performance decreases when the relay number increases. Thus, an adaptive relay selection scheme may be used to choose the appropriate relay numbers in different transmission scenarios to provide system performance improvement and keep the power allocation scheme with low complexity.
基金jointly supported by the National Natural Science Foundation of China under Grant 61201198 and 61372089the Beijing Natural Science Foundation under Grant 4132015,4132007and 4132019
文摘In this paper,a two-way relay system which achieves bi-directional communication via a multiple-antenna relay in two time slots is studied.In the multiple access(MA) phase,the novel receive schemes based on Dempster-Shafer(D-S) evidence theory are proposed at the relay node.Instead of traditional linear detection,the first proposed MIMO-DS NC scheme adopts D-S evidence theory to detect the signals of each source node before mapping them into network-coded signal.Moreover,different from traditional physical-layer network coding(PNC) based on virtual MIMO model,the further proposed MIMO-DS PNC comes from the vector space perspective and combines PNC mapping with D-S theory to obtain network-coded signal without estimating each source node signal.D-S theory can appropriately characterize uncertainty and make full use of multiple evidence source information by Dempster's combination rule to obtain reliable decisions.In the broadcast(BC) phase,the space-time coding(STC) and antenna selection(AS) schemes are adopted to achieve transmit diversity.Simulation results reveal that the STC and AS schemes both achieve full transmit diversity in the BC phase and the proposed MIMO-DS NC/PNC schemes obtain better end-to-end BER performance and throughputs compared with traditional schemes with a little complexity increasing and no matter which scheme is adopted in the BC phase,MIMO-DS PNC always achieves full end-to-end diversity gain as MIMO-ML NC but with a lower complexity and its throughput approaches the throughput of MIMO-ML NC in high SNR regime.
基金Supported by National Basic Research Program of China (2007CB310603)National Natural Science Foundation of China (No.60672093)National High Technology Project of China (2007AA01Z262)
文摘Joint sub-optimization of cooperative relays in Multiple-Input and Multiple-Output (MIMO) multiple relays aided communication system is discussed in this paper. Because the instantaneous channel state information of all source-relay channels and all relay-user channels is difficult to get at each relay node, an unjoined solution is designed according to the channel state information of that relay only. Then a multi-user loading algorithm is proposed to utilize the space diversity through multi-relay transmission. The simulation results show that with the newly proposed multi-user loading algorithm, the unjoined solution can achieve better system performance comparing with joint one in low SNR. However, the complexity of the former is much lower, for only partial CSI is needed.
基金supported by the National Natural Science Foundation of China(No.62201606 and No.62071486)the Project of Science and Technology Planning of Guizhou Province(No.[2020]-030)+3 种基金the Project of Science and Technology Fund of Guizhou Provincial Health Commission(gzwkj2022524)the Project of Youth Science and Technology Talent Growth Guizhou Provincial Department of Education(No.KY[2021]230)the Key Research Base Project of Humanities and Social Sciences of Education Department of Guizhou Provincethe Project of Science and Technology Planning of Zunyi City(No.2022-381 and No.2022-384)。
文摘This paper investigates the effects of the outdated channel state information(CSI)on the secrecy performance of an underlay spectrum sharing cognitive radio networks(CRNs),where the secondary user(SU)source node(Alice)aims to transmit the trusted messages to the full-duplex(FD)aided SU receiver(Bob)with the assistance of cooperative relay(Relay).Considering the impact of feedback delay,outdated CSI will aggravate the system performance.To tackle such challenge,the collaborative zero-forcing beamforming(ZFB)scheme of FD technique is further introduced to implement jamming so as to confuse the eavesdropping and improve the security performance of the system.Under such setup,the exact and asymptotic expressions of the secrecy outage probability(SOP)under the outdated CSI case are derived,respectively.The results reveal that i)the outdated CSI of the SU transmission channel will decrease the diversity gain from min(NANR,NRNB)to NRwith NA,NRand NBbeing the number of antennas of Alice,Relay and Bob,respectively,ii)the introduction of FD technique can improve coding gain and enhance system performance.
基金National Natural Science Foundation of China(No.51204176)
文摘In order to improve link performance of future wireless relay networks,a network coding scheme with linear block codes was proposed,which could be deployed in a relay network consisting of multi-source sending data to a common base station(BS) with the assistance of one relay node.At BS,an iterative decoding structure between one cooperative decoder and a number of single-source decoders was established using the relayed network codes and source codes.Further,the extrinsic information transfer(EXIT) chart technique was used to predict and analyze the convergence behavior of iterative decoder.The analysis and simulation results show that the bit error ratio(BER) performance of the proposed scheme outperforms reference scheme under different relay network coding matrices.Compared with a reference scheme without the multisource cooperation,the proposed scheme can obtain network coding gain from the relay network while not reduce its code rate.
基金This work was supported by the National Natural Science Foundation of China(Nos.61622101 and 61571020)The associate editor coordinating the review of this paper and approving it for publication was G.R.Ding.
文摘In this study,we investigate the relay selection(RS)problem in full-duplex energy-harvesting(FDEH)relay networks,where the relays are wirelessly powered by harvesting a portion of the received signal power from the source.We extend the investigation of the relay selection problem in FDEH relay networks to enable multiple relays to be selected simultaneously for improved performance.This is in contrast with existing studies on RS in similar setups,where only one relay can be selected in a transmission cycle.Our simulations show that selecting only a single relay is not always optimal,especially at low signal-to-noise ratios(SNRs).Furthermore,in this paper,we present the design of a greedy RS method with quadratic complexity for FDEH relay networks.Compared with the exhaustive-search-based RS,the proposed greedy RS achieves near-optimum performance in terms of the end-to-end capacity with significantly reduced complexity.
基金supported by the Hi-Tech Research and Development Program of China (2009AA01Z247,2007AA01Z265)the National Natural Science Foundation of China (60972076)
文摘This article studies the closed-form expressions of outage performance for opportunistic relay under aggregate power constraint in decode-and-forward (DF) relay networks over Rayleigh fading channels, assuming that multiple antennas are available at the relay node. According to whether instantaneous signal-to-noise ratio (SNR) or average SNR can be utilized for relay selection, two opportunistic relay schemes, opportunistic multi-antenna relay selection (OMRS) and average best relay selection (ABRS) are proposed. The performances of both two schemes are evaluated by means of theoretical analysis and simulation, it is observed that OMRS is outage-optimal among multi-antenna relay selection schemes and closely approaches the beamforming (BF) scheme known as theoretical outage-optimal. Compared with previous single-antenna opportunistic relaying (OR) scheme, OMRS brings remarkable performance improvement, which is obtained from maximum ratio combining (MRC) and beamforming techniques. It is also shown that the performance of ABRS in asymmetric channels is close to OMRS in the low and median SNR range.