In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select...In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select the effective scheduling rules( SRs) which are constructed using the project status and attributes of the activities. SRs are represented by the chromosomes of GEP, and an improved parallel schedule generation scheme( IPSGS) is used to transform the SRs into explicit schedules. The framework of GEP-SR for RCPSP is designed,and the effectiveness of the GEP-SR approach is demonstrated by comparing with other methods on the same instances.展开更多
A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The f...A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The fitness function makes use of a mechanism called "strategic oscillation" to make the search process have a higher probability to visit solutions around a "feasible boundary". One of the local search procedures aims at improving the lower bound of project makespan to be less than a known upper bound, and another aims at improving a solution of an MRCPSP instance accepting infeasible solutions based on the new fitness function in the search process. A detailed computational experiment is set up using instances from the problem instance library PSPLIB. Computational results show that the proposed MA is very competitive with the state-of-the-art algorithms. The MA obtains improved solutions for one instance of set J30.展开更多
This paper presents a new genetic algorithm for the resource-constrained project scheduling problem(RCPSP).The algorithm employs a standardized random key(SRK) vector representation with an additional gene that determ...This paper presents a new genetic algorithm for the resource-constrained project scheduling problem(RCPSP).The algorithm employs a standardized random key(SRK) vector representation with an additional gene that determines whether the serial or parallel schedule generation scheme(SGS) is to be used as the decoding procedure.The iterative forward-backward improvement as the local search procedure is applied upon all generated solutions to schedule the project three times and obtain an SRK vector,which is rese...展开更多
This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable dec...This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable decoding scheme. Then a multi-pass biased sampling method followed up by a multi-local search is used to generate a diverse and good quality initial population. The population then evolves through modified order-based recombination and mutation operators to perform exploration for promising solutions within the entire region. Mutation is performed only if the current population has converged or the produced offspring by recombination operator is too similar to one of his parents. Finally the algorithm performs an intensified local search on the best solution found in the evolutionary stage. Computational experiments using standard instances indicate that the proposed algorithm works well in both computational time and solution quality.展开更多
This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations amo...This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations among the activities which require some kinds of renewable resources. We predigest the process of sol-ving the resource availability cost problem (RACP) by using start time of each activity to code the schedule. Then, a novel heuris-tic algorithm is proposed to make the process of looking for the best solution efficiently. And then pseudo particle swarm optimiza-tion (PPSO) combined with PSO and path relinking procedure is presented to solve the RACP. Final y, comparative computational experiments are designed and the computational results show that the proposed method is very effective to solve RACP.展开更多
The resource constrained project scheduling problem (RCPSP) and a decision-making model based on multi-agent systems (MAS) and general equilibrium marketing are proposed. An algorithm leading to the resource allocatio...The resource constrained project scheduling problem (RCPSP) and a decision-making model based on multi-agent systems (MAS) and general equilibrium marketing are proposed. An algorithm leading to the resource allocation decision involved in RCPSP has also been developed. And this algorithm can be used in the multi-project scheduling field as well.Finally, an illustration is given.展开更多
This study utilizes a time-precedence network technique to construct two models of multi-mode resource constrained project scheduling problem with discounted cash flows (MRCPSPDCF), individually including the progre...This study utilizes a time-precedence network technique to construct two models of multi-mode resource constrained project scheduling problem with discounted cash flows (MRCPSPDCF), individually including the progress payment (PP) and the payment at an equal time interval (ETI). The objective of each model is to maximize the net present value (NPV) for all cash flows in the project, subject to the related operational constraints. The models are characterized as NP-hard. A heuristic algorithm, coupled with two upper bound solutions, is proposed to efficiently solve the models and evaluate the heuristic algorithm performance which was not performed in past studies. The results show that the performance of proposed models and heuristic algorithm is good.展开更多
To solve the resource-constrained multiple project scheduling problem(RCMPSP) more effectively,a method based on timed colored Petri net(TCPN) was proposed.In this methodology,firstly a novel mapping mechanism between...To solve the resource-constrained multiple project scheduling problem(RCMPSP) more effectively,a method based on timed colored Petri net(TCPN) was proposed.In this methodology,firstly a novel mapping mechanism between traditional network diagram such as CPM(critical path method)/PERT(program evaluation and review technique) and TCPN was presented.Then a primary TCPN(PTCPN) for solving RCMPSP was modeled based on the proposed mapping mechanism.Meanwhile,the object PTCPN was used to simulate the multiple projects scheduling and to find the approximately optimal value of RCMPSP.Finally,the performance of the proposed approach for solving RCMPSP was validated by executing a mould manufacturing example.展开更多
In this paper we formulate a bi-criteria search strategy of a heuristic learning algorithm for solving multiple resource-constrained project scheduling problems. The heuristic solves problems in two phases. In the pre...In this paper we formulate a bi-criteria search strategy of a heuristic learning algorithm for solving multiple resource-constrained project scheduling problems. The heuristic solves problems in two phases. In the pre-processing phase, the algorithm estimates distance between a state and the goal state and measures complexity of problem instances. In the search phase, the algorithm uses estimates of the pre-processing phase to further estimate distances to the goal state. The search continues in a stepwise generation of a series of intermediate states through search path evaluation process with backtracking. Developments of intermediate states are exclusively based on a bi-criteria new state selection technique where we consider resource utilization and duration estimate to the goal state. We also propose a variable weighting technique based on initial problem complexity measures. Introducing this technique allows the algorithm to efficiently solve complex project scheduling problems. A numerical example illustrates the algorithm and performance is evaluated by extensive experimentation with various problem parameters. Computational results indicate significance of the algorithm in terms of solution quality and computational performance.展开更多
基金The Spring Plan of Ministry of Education,China(No.Z2012017)
文摘In order to minimize the project duration of resourceconstrained project scheduling problem( RCPSP), a gene expression programming-based scheduling rule( GEP-SR) method is proposed to automatically discover and select the effective scheduling rules( SRs) which are constructed using the project status and attributes of the activities. SRs are represented by the chromosomes of GEP, and an improved parallel schedule generation scheme( IPSGS) is used to transform the SRs into explicit schedules. The framework of GEP-SR for RCPSP is designed,and the effectiveness of the GEP-SR approach is demonstrated by comparing with other methods on the same instances.
基金supported by the National Natural Science Foundation of China(71171038)
文摘A memetic algorithm (MA) for a multi-mode resourceconstrained project scheduling problem (MRCPSP) is proposed. We use a new fitness function and two very effective local search procedures in the proposed MA. The fitness function makes use of a mechanism called "strategic oscillation" to make the search process have a higher probability to visit solutions around a "feasible boundary". One of the local search procedures aims at improving the lower bound of project makespan to be less than a known upper bound, and another aims at improving a solution of an MRCPSP instance accepting infeasible solutions based on the new fitness function in the search process. A detailed computational experiment is set up using instances from the problem instance library PSPLIB. Computational results show that the proposed MA is very competitive with the state-of-the-art algorithms. The MA obtains improved solutions for one instance of set J30.
文摘This paper presents a new genetic algorithm for the resource-constrained project scheduling problem(RCPSP).The algorithm employs a standardized random key(SRK) vector representation with an additional gene that determines whether the serial or parallel schedule generation scheme(SGS) is to be used as the decoding procedure.The iterative forward-backward improvement as the local search procedure is applied upon all generated solutions to schedule the project three times and obtain an SRK vector,which is rese...
文摘This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable decoding scheme. Then a multi-pass biased sampling method followed up by a multi-local search is used to generate a diverse and good quality initial population. The population then evolves through modified order-based recombination and mutation operators to perform exploration for promising solutions within the entire region. Mutation is performed only if the current population has converged or the produced offspring by recombination operator is too similar to one of his parents. Finally the algorithm performs an intensified local search on the best solution found in the evolutionary stage. Computational experiments using standard instances indicate that the proposed algorithm works well in both computational time and solution quality.
基金supported by the National Natural Science Foundation of China(7120116671201170)
文摘This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations among the activities which require some kinds of renewable resources. We predigest the process of sol-ving the resource availability cost problem (RACP) by using start time of each activity to code the schedule. Then, a novel heuris-tic algorithm is proposed to make the process of looking for the best solution efficiently. And then pseudo particle swarm optimiza-tion (PPSO) combined with PSO and path relinking procedure is presented to solve the RACP. Final y, comparative computational experiments are designed and the computational results show that the proposed method is very effective to solve RACP.
文摘The resource constrained project scheduling problem (RCPSP) and a decision-making model based on multi-agent systems (MAS) and general equilibrium marketing are proposed. An algorithm leading to the resource allocation decision involved in RCPSP has also been developed. And this algorithm can be used in the multi-project scheduling field as well.Finally, an illustration is given.
文摘This study utilizes a time-precedence network technique to construct two models of multi-mode resource constrained project scheduling problem with discounted cash flows (MRCPSPDCF), individually including the progress payment (PP) and the payment at an equal time interval (ETI). The objective of each model is to maximize the net present value (NPV) for all cash flows in the project, subject to the related operational constraints. The models are characterized as NP-hard. A heuristic algorithm, coupled with two upper bound solutions, is proposed to efficiently solve the models and evaluate the heuristic algorithm performance which was not performed in past studies. The results show that the performance of proposed models and heuristic algorithm is good.
文摘To solve the resource-constrained multiple project scheduling problem(RCMPSP) more effectively,a method based on timed colored Petri net(TCPN) was proposed.In this methodology,firstly a novel mapping mechanism between traditional network diagram such as CPM(critical path method)/PERT(program evaluation and review technique) and TCPN was presented.Then a primary TCPN(PTCPN) for solving RCMPSP was modeled based on the proposed mapping mechanism.Meanwhile,the object PTCPN was used to simulate the multiple projects scheduling and to find the approximately optimal value of RCMPSP.Finally,the performance of the proposed approach for solving RCMPSP was validated by executing a mould manufacturing example.
文摘In this paper we formulate a bi-criteria search strategy of a heuristic learning algorithm for solving multiple resource-constrained project scheduling problems. The heuristic solves problems in two phases. In the pre-processing phase, the algorithm estimates distance between a state and the goal state and measures complexity of problem instances. In the search phase, the algorithm uses estimates of the pre-processing phase to further estimate distances to the goal state. The search continues in a stepwise generation of a series of intermediate states through search path evaluation process with backtracking. Developments of intermediate states are exclusively based on a bi-criteria new state selection technique where we consider resource utilization and duration estimate to the goal state. We also propose a variable weighting technique based on initial problem complexity measures. Introducing this technique allows the algorithm to efficiently solve complex project scheduling problems. A numerical example illustrates the algorithm and performance is evaluated by extensive experimentation with various problem parameters. Computational results indicate significance of the algorithm in terms of solution quality and computational performance.