In this paper, we have proposed a class of ratio-cum-product estimator for estimating population mean of study variable for single phase sampling using multi-auxiliary attributes. The expressions for mean square error...In this paper, we have proposed a class of ratio-cum-product estimator for estimating population mean of study variable for single phase sampling using multi-auxiliary attributes. The expressions for mean square error are derived. An empirical study is given to compare the performance of the estimator with existing estimators. It has been found that the ratio-cum-product estimator using multiple auxiliary attributes is more efficient than mean per unit, product and ratio estimators using one auxiliary attribute, and Product and Ratio estimators using multiple auxiliary attributes in single phase sampling.展开更多
In this paper, we have proposed a class of mixture regression-cum-ratio estimator for estimating population mean by using information on multiple auxiliary variables and attributes simultaneously in single-phase sampl...In this paper, we have proposed a class of mixture regression-cum-ratio estimator for estimating population mean by using information on multiple auxiliary variables and attributes simultaneously in single-phase sampling and analyzed the properties of the estimator. An empirical was carried out to compare the performance of the proposed estimator with the existing estimators of finite population mean using simulated population. It was found that the mixture regression-cum-ratio estimator was more efficient than ratio and regression estimators using one auxiliary variable and attribute, ratio and regression estimators using multiple auxiliary variables and attributes and regression-cum-ratio estimators using multiple auxiliary variables and attributes in single-phase sampling for finite population.展开更多
文摘In this paper, we have proposed a class of ratio-cum-product estimator for estimating population mean of study variable for single phase sampling using multi-auxiliary attributes. The expressions for mean square error are derived. An empirical study is given to compare the performance of the estimator with existing estimators. It has been found that the ratio-cum-product estimator using multiple auxiliary attributes is more efficient than mean per unit, product and ratio estimators using one auxiliary attribute, and Product and Ratio estimators using multiple auxiliary attributes in single phase sampling.
文摘In this paper, we have proposed a class of mixture regression-cum-ratio estimator for estimating population mean by using information on multiple auxiliary variables and attributes simultaneously in single-phase sampling and analyzed the properties of the estimator. An empirical was carried out to compare the performance of the proposed estimator with the existing estimators of finite population mean using simulated population. It was found that the mixture regression-cum-ratio estimator was more efficient than ratio and regression estimators using one auxiliary variable and attribute, ratio and regression estimators using multiple auxiliary variables and attributes and regression-cum-ratio estimators using multiple auxiliary variables and attributes in single-phase sampling for finite population.