Nonlinear analysis of heart rate variability (HRV) has become important as heart behaves as a complex system. In this work, the approximate entropy (ApEn) has been used as a nonlinear measure. A new concept of est...Nonlinear analysis of heart rate variability (HRV) has become important as heart behaves as a complex system. In this work, the approximate entropy (ApEn) has been used as a nonlinear measure. A new concept of estimating the ApEn in different segments of long length of the recorded data called modified multiple scale (segment) entropy (MMPE) is introduced. The idea of estimating the approximate entropy in different segments is useful to detect the nonlinear dynamics of the heart present in the entire length of data. The present work has been carried out for three cases namely the normal healthy heart (NHH) data, congestive heart failure (CHF) data and Atrial fibrillation (AF) data and the data are analyzed using MMPE techniques. It is observed that the mean value of ApEn for NHH data is much higher than the mean values for CHF data and AF data. The ApEn profiles of CHF, AF and NHH data for different segments obtained using MPE profiles measures the heart dynamism for the three different cases. Also the power spectral density is obtained using fast fourier transform (FFT) analysis and the ratio of LF/HF (low frequency/high frequency) power are computed on multiple scales/segments namely MPLH (multiple scale low frequency to high frequency) for the NHH data, CHF data and AF data and analyzed using MPLH techniques. The results are presented and discussed in the paper.展开更多
文摘Nonlinear analysis of heart rate variability (HRV) has become important as heart behaves as a complex system. In this work, the approximate entropy (ApEn) has been used as a nonlinear measure. A new concept of estimating the ApEn in different segments of long length of the recorded data called modified multiple scale (segment) entropy (MMPE) is introduced. The idea of estimating the approximate entropy in different segments is useful to detect the nonlinear dynamics of the heart present in the entire length of data. The present work has been carried out for three cases namely the normal healthy heart (NHH) data, congestive heart failure (CHF) data and Atrial fibrillation (AF) data and the data are analyzed using MMPE techniques. It is observed that the mean value of ApEn for NHH data is much higher than the mean values for CHF data and AF data. The ApEn profiles of CHF, AF and NHH data for different segments obtained using MPE profiles measures the heart dynamism for the three different cases. Also the power spectral density is obtained using fast fourier transform (FFT) analysis and the ratio of LF/HF (low frequency/high frequency) power are computed on multiple scales/segments namely MPLH (multiple scale low frequency to high frequency) for the NHH data, CHF data and AF data and analyzed using MPLH techniques. The results are presented and discussed in the paper.