High-frequency seismic attenuation is conventionally attributed to anelastic absorption. In this paper, I present three studies on high-frequency seismic attenuation and propose that the physical mechanism results fro...High-frequency seismic attenuation is conventionally attributed to anelastic absorption. In this paper, I present three studies on high-frequency seismic attenuation and propose that the physical mechanism results from the interference of elastic microscopic multiple scattering waves. First, I propose a new theory on wave propagation in a two-phase medium which is based on the concept that the basic unit for wave propagation is a nano- mass point. As a result of the elasticity variations of pore fluid and rock framework, micro multiple scattering waves would emerge at the wavelength of the seismic waves passing through the two-phase medium and their interference and overlap would generate high- frequency seismic attenuation. Second, I present a study of the frequency response of seismic transmitted waves by modeling thin-layers with thicknesses no larger than pore diameters. Results indicate that high-frequency seismic waves attenuate slightly in a near-surface water zone but decay significantly in a near-surface gas zone. Third, I analyze the seismic attenuation characteristics in near-surface water and gas zones using dual-well shots in the Songliao Basin, and demonstrate that the high-frequency seismic waves attenuate slightly in water zones but in gas zones the 160-1600 Hz propagating waves decay significantly. The seismic attenuation characteristics from field observations coincide with the modeling results. Conclusions drawn from these studies theoretically support seismic attenuation recovery.展开更多
文摘High-frequency seismic attenuation is conventionally attributed to anelastic absorption. In this paper, I present three studies on high-frequency seismic attenuation and propose that the physical mechanism results from the interference of elastic microscopic multiple scattering waves. First, I propose a new theory on wave propagation in a two-phase medium which is based on the concept that the basic unit for wave propagation is a nano- mass point. As a result of the elasticity variations of pore fluid and rock framework, micro multiple scattering waves would emerge at the wavelength of the seismic waves passing through the two-phase medium and their interference and overlap would generate high- frequency seismic attenuation. Second, I present a study of the frequency response of seismic transmitted waves by modeling thin-layers with thicknesses no larger than pore diameters. Results indicate that high-frequency seismic waves attenuate slightly in a near-surface water zone but decay significantly in a near-surface gas zone. Third, I analyze the seismic attenuation characteristics in near-surface water and gas zones using dual-well shots in the Songliao Basin, and demonstrate that the high-frequency seismic waves attenuate slightly in water zones but in gas zones the 160-1600 Hz propagating waves decay significantly. The seismic attenuation characteristics from field observations coincide with the modeling results. Conclusions drawn from these studies theoretically support seismic attenuation recovery.