期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Spatial-Temporal Correlation 3D Vehicle Detection and Tracking System with Multiple Surveillance Cameras
1
作者 薛炜彭 吴明虎 王琳 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第1期52-60,共9页
Compared to 3D object detection using a single camera,multiple cameras can overcome some limitations on field-of-view,occlusion,and low detection confidence.This study employs multiple surveillance cameras and develop... Compared to 3D object detection using a single camera,multiple cameras can overcome some limitations on field-of-view,occlusion,and low detection confidence.This study employs multiple surveillance cameras and develops a cooperative 3D object detection and tracking framework by incorporating temporal and spatial information.The framework consists of a 3D vehicle detection model,cooperatively spatial-temporal relation scheme,and heuristic camera constellation method.Specifically,the proposed cross-camera association scheme combines the geometric relationship between multiple cameras and objects in corresponding detections.The spatial-temporal method is designed to associate vehicles between different points of view at a single timestamp and fulfill vehicle tracking in the time aspect.The proposed framework is evaluated based on a synthetic cooperative dataset and shows high reliability,where the cooperative perception can recall more than 66%of the trajectory instead of 11%for single-point sensing.This could contribute to full-range surveillance for intelligent transportation systems. 展开更多
关键词 multi-object tracking 3D detection multiple sensors cooperative perception spatial-temporal correlation intelligent transportation system
原文传递
Stretchable multifunctional sensor based on porous silver nanowire/silicone rubber conductive film 被引量:1
2
作者 Hai-Tao Deng Dan-Liang Wen +5 位作者 Jing-Rui Liu Xin-Ran Zhang Yi-Lin Wang Peng Huang Beomjoon Kim Xiao-Sheng Zhang 《Nano Research》 SCIE EI CSCD 2023年第5期7618-7626,共9页
As one of the promising human–machine interfaces,wearable sensors play an important role in modern society,which advances the development of wearable fields,especially in the promising applications of electronic skin... As one of the promising human–machine interfaces,wearable sensors play an important role in modern society,which advances the development of wearable fields,especially in the promising applications of electronic skin(e-skin),robotics,prosthetics,healthcare.In the last decades,wearable sensors tend to be capable of attractive capabilities such as miniaturization,multifunction,smart integration,wearable properties such as lightweight,flexibility,stretchability,conformability for wider applications.In this work,we developed a stretchable multifunctional sensor based on porous silver nanowire/silicone rubber conductive film(P-AgNW/SR).Its unique structural configuration,i.e.,an assembly of the P-AgNW/SR with good conductivity,stability,resistance response,the insulated silicone rubber layer,provided the feasibility for realizing multiple sensing capabilities.Specifically,porous microstructures of the P-AgNW/SR made the device to be used for pressure sensing,exhibiting outstanding dynamic and static resistive responsive behaviors and having a maximum sensitivity of 9.062%∙N^(−1) in a continuous compressive force range of~16 N.With the merit of the good piezoresistive property of AgNW/SR networks embedded into the surface of micropores of the P-AgNW/SR,the device was verified to be a temperature sensor for detecting temperature changes in the human body and environment.The temperature sensor had good sensitivity of 0.844%∙℃^(−1),high linearity of 0.999 in the range of 25–125℃,remarkable dynamic stability.Besides,the developed sensor was demonstrated to be a single electrode-triboelectric sensor for active sensing,owing to the unique assembly of the conductive PAgNW/SR electrode and the silicone rubber friction layer.Based on the coupling effect of the triboelectrification and electrostatic induction,the generated electrical signals could be used to sense the human motions,according to the quantitative correlation between the human motions and the features in amplitude and waveform of the output signals.Thus,the developed stretchable sensor successfully achieved the integration of two types of passive sensing capabilities,i.e.,pressure and temperature sensing,and one type of active sensing capability,i.e.,triboelectric sensing,demonstrating the feasibility of monitoring multiple variables of the human body and environment. 展开更多
关键词 wearable electronics porous microstructures multiple sensors pressure sensing temperature sensing triboelectric sensing
原文传递
Terrain based co-operative UAV mapping of complex obstacles using 2-D splinegon
3
作者 Samuel B.Lazarus Antonios Tsourdos +4 位作者 Brian A.White Peter Silson Al Savvaris Camille-Alain Rabbath Nicolas Lèchevin 《International Journal of Intelligent Computing and Cybernetics》 EI 2012年第3期248-292,共45页
Purpose-This paper aims to describe a recently proposed algorithm in terrain-based cooperative UAV mapping of the unknown complex obstacle in a stationary environment where the complex obstacles are represented as cur... Purpose-This paper aims to describe a recently proposed algorithm in terrain-based cooperative UAV mapping of the unknown complex obstacle in a stationary environment where the complex obstacles are represented as curved in nature.It also aims to use an extended Kalman filter(EKF)to estimate the fused position of the UAVs and to apply the 2-D splinegon technique to build the map of the complex shaped obstacles.The path of the UAVs are dictated by the Dubins path planning algorithm.The focus is to achieve a guaranteed performance of sensor based mapping of the uncertain environments using multiple UAVs.Design/methodology/approach–An extended Kalman filter is used to estimate the position of the UAVs,and the 2-D splinegon technique is used to build the map of the complex obstacle where the path of the UAVs are dictated by the Dubins path planning algorithm.Findings-The guaranteed performance is quantified by explicit bounds of the position estimate of the multiple UAVs for mapping of the complex obstacles using 2-D splinegon technique.This is a newly proposed algorithm,the most efficient and a robust way in terrain based mapping of the complex obstacles.The proposed method can provide mathematically provable and performance guarantees that are achievable in practice.Originality/value-The paper describes the main contribution in mapping the complex shaped curvilinear objects using the 2-D splinegon technique.This is a new approach where the fused EKF estimated positions are used with the limited number of sensors’measurements in building the map of the complex obstacles. 展开更多
关键词 multiple sensor fusion Data fusion EKF based navigation multiple UAVs 2-D splinegon Robust UAV localization Complex obstacle mapping Sensor fusion NAVIGATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部