期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis of torque transmitting behavior and wheel slip prevention control during regenerative braking for high speed EMU trains 被引量:4
1
作者 Kun Xu Guo-Qing Xu Chun-Hua Zheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期244-251,共8页
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recover... The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology. 展开更多
关键词 High speed electric multiple unit(EMU) train Regenerative braking Wheel-rail adhesion Optimal slip ratio
下载PDF
An integrated optimization design of a fishing ship hullform at different speeds 被引量:2
2
作者 杨磊 李胜忠 +1 位作者 赵峰 倪其军 《Journal of Hydrodynamics》 SCIE EI CSCD 2018年第6期1174-1181,共8页
This paper shows how to improve the hydrodynamics performance of a ship by solving a shape optimization design problem at different speeds using the simulation-based design(SBD) technique. The SBD technique is impleme... This paper shows how to improve the hydrodynamics performance of a ship by solving a shape optimization design problem at different speeds using the simulation-based design(SBD) technique. The SBD technique is implemented by integrating the advanced CFD codes, the global optimization algorithms and the geometry modification methods, which offers a new way for the hullform optimization design and the configuration innovation. The multiple speed integrated optimization for the hullform design is a challenge. In this paper, an example of the technique application for a fishing ship hullform optimization at different speeds is demonstrated. In this optimization process, the free-form deformation method is applied to automatically modify the geometry of the ship, and the multi-objective particle swarm optimization(MOPSO) algorithm is adopted for exploring the design space. Two objective functions, the total resistances at two different speeds(12 kn and 14 kn) are assessed by the RANS solvers. The optimization results show that the decrease of the total resistance is significant after the optimization at the two speeds, with a reduction of 5.0% and 11.2%, respectively. Finally, dedicated experimental validations for the design model and the optimized model are carried out for the computation and the optimization processes. At the two speeds, the reduction of the total resistance in the model scale is about 6.0% and 11.8% after the optimization. It is a valuable result in view of the small modifications allowed and the good initial performances of the original model. The given practical example demonstrates the feasibility and the superiority of the proposed SBD technique for the multiple speed integrated optimization. 展开更多
关键词 Hullform design optimization simulation-based design (SBD) techniques multiple speeds optimization CFD techniques total resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部