Achieving multicolor photoluminescence under multiple stimuli response based on a single fluorescent compound remains a great challenge. Herein, we report a novel multicolor fluorescent supramolecular assembly, which ...Achieving multicolor photoluminescence under multiple stimuli response based on a single fluorescent compound remains a great challenge. Herein, we report a novel multicolor fluorescent supramolecular assembly, which was constructed from surfactant sodium dodecyl sulfate (SLS) and fluorescent compound 1 bearing a rigid symmetrical acceptor-donor-acceptor structure. The luminescence property of 1/SLS assembly showed the multiple stimuli response towards temperature, cyclodextrin complexation and UV light irradiation, exhibiting the tunable emission wavelengths from 490 nm to 590 nm and the multicolor photoluminescence including cyan, green, yellow and orange. Furthermore, this assembly could be used in light writing owing to the fast fluorescence change within 15 s. These results could provide a convenient and useful method for fabricating smart tunable photoluminescent materials.展开更多
文摘Achieving multicolor photoluminescence under multiple stimuli response based on a single fluorescent compound remains a great challenge. Herein, we report a novel multicolor fluorescent supramolecular assembly, which was constructed from surfactant sodium dodecyl sulfate (SLS) and fluorescent compound 1 bearing a rigid symmetrical acceptor-donor-acceptor structure. The luminescence property of 1/SLS assembly showed the multiple stimuli response towards temperature, cyclodextrin complexation and UV light irradiation, exhibiting the tunable emission wavelengths from 490 nm to 590 nm and the multicolor photoluminescence including cyan, green, yellow and orange. Furthermore, this assembly could be used in light writing owing to the fast fluorescence change within 15 s. These results could provide a convenient and useful method for fabricating smart tunable photoluminescent materials.