期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification 被引量:4
1
作者 毛勇 皮道映 +1 位作者 刘育明 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期65-72,共8页
Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently i... Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application. 展开更多
关键词 variable selection support vector machine recursive feature elimination fault diagnosis
下载PDF
Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition
2
作者 Yi-Chun Lai Shu-Yin Chiang +1 位作者 Yao-Chiang Kan Hsueh-Chun Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期3783-3803,共21页
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr... Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications. 展开更多
关键词 Human activity recognition artificial intelligence support vector machine random forest adaptive neuro-fuzzy inference system convolution neural network recursive feature elimination
下载PDF
Novel feature fusion method for speech emotion recognition based on multiple kernel learning
3
作者 金赟 宋鹏 +1 位作者 郑文明 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期129-133,共5页
In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the gl... In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the global and the local features are combined together. Moreover, the multiple kernel learning method is adopted. The global features and each kind of local feature are respectively associated with a kernel, and all these kernels are added together with different weights to obtain a mixed kernel for nonlinear mapping. In the reproducing kernel Hilbert space, different kinds of emotional features can be easily classified. In the experiments, the popular Berlin dataset is used, and the optimal parameters of the global and the local kernels are determined by cross-validation. After computing using multiple kernel learning, the weights of all the kernels are obtained, which shows that the formant and intensity features play a key role in speech emotion recognition. The classification results show that the recognition rate is 78. 74% by using the global kernel, and it is 81.10% by using the proposed method, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 speech emotion recognition multiple kemellearning feature fusion support vector machine
下载PDF
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
4
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 Gene selection support vector machine (SVM) RECURSIVE feature elimination (RFE) GENETIC algorithm (GA) Parameter SELECTION
下载PDF
Multi-Dimension Support Vector Machine Based Crowd Detection and Localisation Framework for Varying Video Sequences
5
作者 Manoharan Mahalakshmi Radhakrishnan Kanthavel Divakaran Thilagavathy Dinesh 《Circuits and Systems》 2016年第11期3565-3588,共24页
In this paper, we propose a novel method for anomalous crowd behaviour detection and localization with divergent centers in intelligent video sequence through multiple SVM (support vector machines) based appearance mo... In this paper, we propose a novel method for anomalous crowd behaviour detection and localization with divergent centers in intelligent video sequence through multiple SVM (support vector machines) based appearance model. In multi-dimension SVM crowd detection, many features are available to track the object robustly with three main features which include 1) identification of an object by gray scale value, 2) histogram of oriented gradients (HOG) and 3) local binary pattern (LBP). We propose two more powerful features namely gray level co-occurrence matrix (GLCM) and Gaber feature for more accurate and authenticate tracking result. To combine and process the corresponding SVMs obtained from each features, a new collaborative strategy is developed on the basis of the confidence distribution of the video samples which are weighted by entropy method. We have adopted subspace evolution strategy for reconstructing the image of the object by constructing an update model. Also, we determine reconstruction error from the samples and again automatically build an update model for the target which is tracked in the video sequences. Considering the movement of the targeted object, occlusion problem is considered and overcome by constructing a collaborative model from that of appearance model and update model. Also if update model is of discriminative model type, binary classification problem is taken into account and overcome by collaborative model. We run the multi-view SVM tracking method in real time with subspace evolution strategy to track and detect the moving objects in the crowded scene accurately. As shown in the result part, our method also overcomes the occlusion problem that occurs frequently while objects under rotation and illumination change due to different environmental conditions. 展开更多
关键词 multiple support vector Machine Crowd Detection Motion Blur Collaborative Model Gaber feature
下载PDF
纤维肌痛综合征生物标记物的筛选及免疫细胞浸润分析
6
作者 刘雅妮 杨静欢 +5 位作者 陆慧慧 易玉芳 李智翔 欧阳福 吴璟莉 魏兵 《中国组织工程研究》 CAS 北大核心 2025年第5期1091-1100,共10页
背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法... 背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法筛选纤维肌痛综合征潜在的诊断相关标志基因,并分析其免疫细胞浸润特征。方法:对来自基因表达综合数据库(GEO)的纤维肌痛综合征数据集转录谱进行差异分析和WGCNA分析,整合筛选出差异共表达基因,进一步采用机器学习套索回归(LASSO)算法、支持向量机递归特征消除(SVM-RFE)机器学习算法来识别核心生物标志物,并绘制受试者工作特征(ROC)曲线以评估诊断价值。最后,采用单样本基因集富集分析(ssGSEA)和基因集富集分析(GSEA)评估纤维肌痛综合征的免疫细胞浸润情况及通路富集。结果与结论:①对GSE67311数据集按照log2|(FC)|>0,P<0.05的条件进行差异分析后获得8个下调的差异表达基因;进行WGCNA分析后获得正相关性最高(r=0.22,P=0.04)的模块(MEdarkviolet)内含基因497个,负相关性最高(r=-0.41,P=6×10-5)的模块(MEsalmon2)内含基因19个;将差异表达基因与WGCNA的2个高相关性模块基因取交集,获得7个基因。②对上述7个基因进行LASSO回归算法筛选出4个基因,进行SVM-RFE机器学习算法筛选出5个基因,两者取交集后确定了3个核心基因,分别为重组1号染色体开放阅读框150蛋白(germinal center associated signaling and motility like,GCSAML)、整合素β8(Integrin beta-8,ITGB8)和羧肽酶A3(carboxypeptidase A3,CPA3);绘制3个核心基因的ROC曲线下面积分别为0.744,0.739,0.734,提示均具有很好的诊断价值,可作为纤维肌痛综合征的生物标志物。③免疫浸润分析结果显示,与对照组相比纤维肌痛综合征患者记忆B细胞、CD56 bright NK细胞和肥大细胞显著下调(P<0.05),且与上述3个生物标志物显著正相关(P<0.05)。④富集分析结果提示,纤维肌痛综合征的富集途径包括9条,主要与嗅觉传导、神经活性配体-受体相互作用及感染等通路密切相关。⑤上述结果显示,纤维肌痛综合征的发生发展与多基因参与、免疫调节异常及多个通路失调有关,但这些基因与免疫细胞之间的相互作用,以及它们与各通路之间的关系尚需进一步研究。 展开更多
关键词 纤维肌痛综合征 生物信息学 机器学习 免疫浸润 加权基因共表达网络分析 套索回归 支持向量机递归特征消除算法 单样本基因集富集分析 基因集富集分析
下载PDF
融合支持向量机和特征降维方法的人-椅系统振动模型研究
7
作者 王新伟 张筱璐 +1 位作者 林森 高宇欣 《声学学报》 EI CAS CSCD 北大核心 2024年第2期217-225,共9页
人-椅系统的振动传递特性受人体体征参数、座椅结构、乘坐环境等多种复杂因素影响。在人体振动实验研究的基础上,寻求构建一种基于支持向量机回归的座椅频响函数预测模型,分别采用递归特征消除法和主成分分析法对人体体征参数进行降维,... 人-椅系统的振动传递特性受人体体征参数、座椅结构、乘坐环境等多种复杂因素影响。在人体振动实验研究的基础上,寻求构建一种基于支持向量机回归的座椅频响函数预测模型,分别采用递归特征消除法和主成分分析法对人体体征参数进行降维,并将低维特征输入预测模型,以实现对人-椅系统频响函数及其正交轴效应的预测。结果显示,相比传统支持向量机回归模型,应用主成分分析法降低体征参数关联,可以显著降低模型预测误差,预测值与实测值拟合度可达92%。通过递归特征消除法剔除次要体征参数,可进一步提升预测精度,预测值与实测值拟合度达94%。研究表明,基于特征降维优化的支持向量机回归预测模型能够有效筛选人体振动模型中输入参数的冗余信息,并提升座椅频响函数的计算效率和预测精度。 展开更多
关键词 人-椅系统 支持向量回归 递归特征消除 主成分分析
下载PDF
基于工况识别的PHEV能量管理策略
8
作者 张代庆 牛礼民 +1 位作者 汪恒 张义奇 《西华大学学报(自然科学版)》 CAS 2024年第3期54-63,共10页
为提升并联式混合动力汽车(parallel hybrid electric vehicle,PHEV)的燃油经济性,针对等效燃油消耗最小控制策略(equivalent fuel consumption minimum strategy,ECMS)在不同工况下适应性差的问题,以优化整车等效燃油消耗量为目标,设... 为提升并联式混合动力汽车(parallel hybrid electric vehicle,PHEV)的燃油经济性,针对等效燃油消耗最小控制策略(equivalent fuel consumption minimum strategy,ECMS)在不同工况下适应性差的问题,以优化整车等效燃油消耗量为目标,设计基于工况识别算法的变等效因子ECMS能量管理策略。选取3类典型工况建立支持向量机分类模型,通过递归特征消除法对样本特征进行选择,采用鲸鱼算法对支持向量机进行参数优化,使用模拟退火算法分别对3类工况的ECMS等效因子进行离线全局最优求解,并分别存储于等效因子库中,通过训练好的支持向量机分类器对目标优化工况进行工况识别,不同类型的工况片段采用不同的等效因子进行转矩分配。仿真结果显示:相比于逻辑门限能量管理策略,基于工况识别算法的变等效因子ECMS能量管理策略的电池荷电状态(state of charge,SOC)变化量减少8.67%,节油率为13.11%;相比于优化前的ECMS策略电池SOC变化量减少3.47%,节油率约为6.63%。本文提出的基于工况识别算法的变等效因子ECMS能量管理策略可以有效地减少燃油消耗量,提升PHEV的整车经济性。 展开更多
关键词 并联混合动力汽车 能量管理策略 工况识别 鲸鱼优化算法 支持向量机 递归特征消除 等效燃油消耗最小
下载PDF
轨道几何状态检测异常数据实时智能识别
9
作者 程朝阳 王昊 +4 位作者 侯智雄 李颖 杨劲松 韩志 郝晋斐 《铁道建筑》 北大核心 2024年第2期25-29,共5页
受外界干扰、数据传输、传感器信号偏移等因素影响,轨道几何状态检测数据会产生异常峰值超限,影响现场检测人员工作效率。考虑到异常数据样本较少的不利因素,本文基于轨道几何检测系统传感器正常数据,通过消除数据趋势项,提取时序数据... 受外界干扰、数据传输、传感器信号偏移等因素影响,轨道几何状态检测数据会产生异常峰值超限,影响现场检测人员工作效率。考虑到异常数据样本较少的不利因素,本文基于轨道几何检测系统传感器正常数据,通过消除数据趋势项,提取时序数据多维特征组成训练集,训练并构建了基于单分类支持向量机的异常数据智能识别模型。运用该模型对某地铁轨道几何检测系统单边位移的时序数据进行预处理、特征提取和智能分类,试验验证了其识别效果。结果表明:该方法识别效果好,误报率低,异常数据识别准确率高,且具有轻量化、易部署的特点,可满足轨道几何检测系统实时检测要求。 展开更多
关键词 轨道几何状态检测 异常识别 特征提取 智能识别模型 单分类支持向量机 趋势项消除
下载PDF
Feature Rescaling of Support Vector Machines 被引量:3
10
作者 武征鹏 张学工 《Tsinghua Science and Technology》 SCIE EI CAS 2011年第4期414-421,共8页
Support vector machines (SVMs) have widespread use in various classification problems. Although SVMs are often used as an off-the-shelf tool, there are still some important issues which require improvement such as f... Support vector machines (SVMs) have widespread use in various classification problems. Although SVMs are often used as an off-the-shelf tool, there are still some important issues which require improvement such as feature rescaling. Standardization is the most commonly used feature rescaling method. However, standardization does not always improve classification accuracy. This paper describes two feature rescaling methods: multiple kernel learning-based rescaling (MKL-SVM) and kernel-target alignment-based rescaling (KTA-SVM). MKL-SVM makes use of the framework of multiple kernel learning (MKL) and KTA-SVM is built upon the concept of kernel alignment, which measures the similarity between kernels. The proposed meth- ods were compared with three other methods: an SVM method without rescaling, an SVM method with standardization, and SCADSVM. Test results demonstrate that different rescaling methods apply to different situations and that the proposed methods outperform the others in general. 展开更多
关键词 support vector machines (SVMs) feature rescaling multiple kernel learning (MKL) kernel-targetalignment (KTA)
原文传递
基于SVM-RFE和粒子群优化算法的恶意域名检测模型 被引量:1
11
作者 赵正利 姜鹏 +1 位作者 仲国强 吴建新 《福州大学学报(自然科学版)》 CAS 北大核心 2023年第5期634-638,共5页
本研究利用机器学习和随机搜索算法,提出一种基于SVM-RFE和粒子群优化算法的恶意域名检测模型.分析域名字符特征、解析特征和相关特征,使用SVM-RFE算法进行特征权重排序,通过优化的粒子群算法确定最佳SVM参数和特征选择.实验证明该检测... 本研究利用机器学习和随机搜索算法,提出一种基于SVM-RFE和粒子群优化算法的恶意域名检测模型.分析域名字符特征、解析特征和相关特征,使用SVM-RFE算法进行特征权重排序,通过优化的粒子群算法确定最佳SVM参数和特征选择.实验证明该检测模型具有较好的效率和准确度. 展开更多
关键词 网络安全 恶意域名 支持向量机 递归特征消除 粒子群算法
下载PDF
耦合递归特征消除与二维CNN的滑坡敏感性评价 被引量:1
12
作者 张沛 李英冰 +1 位作者 张镇平 胡露太 《测绘通报》 CSCD 北大核心 2023年第12期88-93,共6页
针对传统滑坡敏感性评价方法仅考虑滑坡点本身的影响因子信息,而忽略周围空间信息的问题,本文提出了一种耦合递归特征消除与二维卷积神经网络相结合的方法。首先通过递归特征消除对滑坡影响因子进行排序与筛选;其次裁取二维特征因子集... 针对传统滑坡敏感性评价方法仅考虑滑坡点本身的影响因子信息,而忽略周围空间信息的问题,本文提出了一种耦合递归特征消除与二维卷积神经网络相结合的方法。首先通过递归特征消除对滑坡影响因子进行排序与筛选;其次裁取二维特征因子集输入添加了L2正则化、Dropout等优化方法的二维CNN中,顾及滑坡周围的空间信息,在保证模型精度与泛化能力的基础上预测滑坡敏感性;然后以九寨沟地区为试验区,选取高程、岩性等14个相关因子作为滑坡影响因素,预测试验区的滑坡发生概率并绘制滑坡敏感性图;最后使用Logistic模型和带有3种不同核函数(线性核函数、径向基核函数、Sigmoid核函数)的SVM模型进行对比验证。结果表明,本文方法具有最高的准确度与AUC,且具有效性与可靠性。 展开更多
关键词 滑坡敏感性 递归特征消除 二维卷积神经网络 L2正则化 支持向量机
下载PDF
一种基于SVR和GRU的新型电力监控防护系统 被引量:1
13
作者 申晓杰 廖华 +2 位作者 李闯 潘鹏 李更达 《计算机技术与发展》 2023年第3期215-220,共6页
为满足电力监控防护系统精细化、实时化和智能化的复杂要求,设计了一种基于支持向量回归(SVR)安全态势识别和门循环单元(GRU)预测策略的新型电力监控防护系统。基于支持向量机的递归特征消除(SVM-RFE)技术和皮尔森相关系数(Pearson)构... 为满足电力监控防护系统精细化、实时化和智能化的复杂要求,设计了一种基于支持向量回归(SVR)安全态势识别和门循环单元(GRU)预测策略的新型电力监控防护系统。基于支持向量机的递归特征消除(SVM-RFE)技术和皮尔森相关系数(Pearson)构建了安全识别指标体系。基于SVR技术,构建了基于SVR的安全态势识别模型。相较于BPNN模型,SVR模型的安全态势识别结果在均方差误差(RMSE)和平均绝对百分比误差(MAPE)上分别降低了43.60%和70.23%。基于GRU神经网络,构建了基于GRU的安全态势预测模型。相较于RBF模型和SVR模型,GRU预测模型的RMSE分别降低了19.23%和23.56%,MAPE降低了48.33%和58.73%。最后实现了电力监控防护系统,并通过实验验证了系统可行性。该研究为电力监控防护系统的安全运维提供重要参考,为构建智慧电网提供了技术支撑。 展开更多
关键词 电力监控防护系统 安全识别指标体系 支持向量回归 门循环单元 递归特征消除
下载PDF
基于贝叶斯优化的支持向量回归模型对电能表在线率的预测 被引量:3
14
作者 余俊泽 夏显威 +3 位作者 雷春俊 赵冬立 马群 陈百龄 《广东电力》 2023年第9期72-79,共8页
为预测电能表的在线状态,保障塔里木油田生产用电,将迪那地区电能表在线数等24个变量作为研究对象,运用反向特征消除方法进行数据降维,得到影响在线率的5个主要变量。进一步通过贝叶斯优化的支持向量回归方法完成对电能表在线率的预测,... 为预测电能表的在线状态,保障塔里木油田生产用电,将迪那地区电能表在线数等24个变量作为研究对象,运用反向特征消除方法进行数据降维,得到影响在线率的5个主要变量。进一步通过贝叶斯优化的支持向量回归方法完成对电能表在线率的预测,并与随机森林算法、梯度提升算法等预测方法进行比较。计算结果表明,该模型在预测电能表在线率的任务中表现出色,预测值加权平均误差低至0.408%,明显优于其他各算法。以塔里木油田为例,该模型可提升电网运维效率,为实现高效的电能分配提出了一条切实可行的途径。 展开更多
关键词 异常值剔除 非线性问题 反向特征消除 贝叶斯优化 支持向量回归 电能表在线率
下载PDF
基于机器学习算法筛选鼻咽癌诊断基因标志物的研究 被引量:1
15
作者 王艺任 刘艾艾 +2 位作者 詹翔 罗颜 周平 《实用临床医药杂志》 CAS 2023年第7期6-11,共6页
目的基于最小绝对收缩和选择算子(LASSO)算法与支持向量机递归特征消除(SVM-RFE)算法筛选用于鼻咽癌(NPC)诊断的特征基因标志物。方法从GEO数据库下载基因表达微阵列数据集GSE53819、GSE13597作为训练集,从GTEx数据库、ICGC数据库分别... 目的基于最小绝对收缩和选择算子(LASSO)算法与支持向量机递归特征消除(SVM-RFE)算法筛选用于鼻咽癌(NPC)诊断的特征基因标志物。方法从GEO数据库下载基因表达微阵列数据集GSE53819、GSE13597作为训练集,从GTEx数据库、ICGC数据库分别下载转录组测序数据集GTEx-NPC、ICGC-NPC作为训练集、验证集。通过基因表达差异分析筛选NPC相关差异表达基因(DEGs),再通过LASSO算法和SVM-RFE算法分别筛选3个训练集中的NPC诊断特征基因。结合外部验证集,通过受试者工作特征(ROC)曲线的曲线下面积(AUC)评估特征基因对NPC的诊断效能。结果本研究共筛选出582个NPC相关DEGs,包括156个高表达DEGs和426个低表达DEGs;基于LASSO算法与SVM-RFE算法,GSE53819、GSE13597、GTEx-NPC数据集均筛选出3个关键诊断特征基因HOXA10、AFF3、SHISA3,且GTEx-NPC数据集另有1个特征基因PLAU;ROC曲线分析结果显示,特征基因HOXA10、AFF3、SHISA3、PLAU在各数据集中诊断NPC的AUC均大于0.7,具有良好的诊断效能。结论基于LASSO算法和SVM-RFE算法可筛选出4个潜在的NPC诊断特征基因标志物,且外部验证结果显示这些基因标志物在诊断NPC方面具有良好效能,这为NPC的早期诊断和相关基因的分子机制研究提供了有价值的参考。 展开更多
关键词 鼻咽癌 基因组学 机器学习 生物信息学 支持向量机递归特征消除 套索回归
下载PDF
BFS-SVM Classifier for QoS and Resource Allocation in Cloud Environment
16
作者 A.Richard William J.Senthilkumar +1 位作者 Y.Suresh V.Mohanraj 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期777-790,共14页
In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocatio... In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocation in order tomeet the Quality of Service(QoS)requirements of users.For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work.The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection(BFS)in the proposed work,this further reduces the inappropriate features from the data.The similarities that were hidden can be demoralized by the Support Vector Machine(SVM)classifier which is also determine the subspace vector and then a new feature vector can be predicted by using SVM.For an unexpected circumstance SVM model can make a resource allocation decision.The efficiency of proposed SVM classifier of resource allocation can be highlighted by using a singlecell multiuser massive Multiple-Input Multiple Output(MIMO)system,with beam allocation problem as an example.The proposed resource allocation based on SVM performs efficiently than the existing conventional methods;this has been proven by analysing its results. 展开更多
关键词 Bat algorithm with feature selection(BFS) support vector machine(SVM) multiple-input multiple output(MIMO) quality of service(QoS) CLASSIFIER cloud computing
下载PDF
基于SVM RFE的人脸特征选择方法 被引量:4
17
作者 李伟红 龚卫国 +2 位作者 陈伟民 梁毅雄 尹克重 《光电工程》 EI CAS CSCD 北大核心 2006年第5期113-117,共5页
提出一种新的基于SVMRFE(SupportVectorMachineRecursiveFeatureElimination)的人脸特征选择方法。该方法将权重矢量和半径/间隔作为SVMRFE的特征选择标准,采用缩放因子梯度算法优化特征搜索。基于该方法构建了一种实用、有效的人脸特... 提出一种新的基于SVMRFE(SupportVectorMachineRecursiveFeatureElimination)的人脸特征选择方法。该方法将权重矢量和半径/间隔作为SVMRFE的特征选择标准,采用缩放因子梯度算法优化特征搜索。基于该方法构建了一种实用、有效的人脸特征提取、选择及识别框架,并在UMIST人脸数据库上进行了验证实验。对特征选择前后的分类能力及速度进行了分析比较,结果表明,该方法是一种实用、有效的人脸特征选择方法,可以在特征维数为80左右时,达到94.62%的分类识别率。 展开更多
关键词 特征选择 人脸识别 支持向量机 SVM RFE
下载PDF
字符多特征提取方法及其在车牌识别中的应用 被引量:23
18
作者 何兆成 佘锡伟 +1 位作者 余文进 杨文臣 《计算机工程与应用》 CSCD 北大核心 2011年第23期228-231,共4页
针对车牌字符识别中大部分单一特征提取方法在字符识别上的局限性,提出了一种车牌字符多特征提取方法。在经过预处理后的车牌细化字符基础上提取字符4个侧面的笔画特征、拐点特征、轮廓累积特征及字符内部像素特征,构建出一个维度较低... 针对车牌字符识别中大部分单一特征提取方法在字符识别上的局限性,提出了一种车牌字符多特征提取方法。在经过预处理后的车牌细化字符基础上提取字符4个侧面的笔画特征、拐点特征、轮廓累积特征及字符内部像素特征,构建出一个维度较低的特征向量集,然后分别采用支持向量机、K近邻算法、BP神经网络、径向基神经网络对陆丰高速公路实地拍摄的车牌图片进行测试并分别与模板匹配方法、网格法、基于小波矩方法比较,实验结果表明提出的车牌字符多特征提取方法识别率高,鲁棒性好。 展开更多
关键词 车牌字符识别 多特征提取 支持向量机 神经网络 K近邻
下载PDF
PCA和KICA特征提取的变压器故障诊断模型 被引量:50
19
作者 唐勇波 桂卫华 +1 位作者 彭涛 欧阳伟 《高电压技术》 EI CAS CSCD 北大核心 2014年第2期557-563,共7页
为了充分利用主元分析(PCA)和核独立主元分析(KICA)特征提取的互补性,提高变压器故障分类正确率,提出了基于PCA和KICA特征提取的变压器故障诊断模型。该模型中,首先,将油中溶解气体分析(DGA)测试样本投影到PCA空间中进行特征提取,采用... 为了充分利用主元分析(PCA)和核独立主元分析(KICA)特征提取的互补性,提高变压器故障分类正确率,提出了基于PCA和KICA特征提取的变压器故障诊断模型。该模型中,首先,将油中溶解气体分析(DGA)测试样本投影到PCA空间中进行特征提取,采用多核支持向量机(MKSVM)作为分类器进行预分类,采用核密度估计方法估计阈值将测试样本预分类为易识别或难识别样本;对难分类样本则再次投影到KICA空间,采用另一MKSVM作为分类器进行分类识别,实现PCA和KICA双空间特征提取算法;最后,根据故障特征,建立变压器故障诊断模型。实验结果表明,所提出的双空间算法对变压器故障的识别率达到88.61%,比单空间算法和IEC3比值法的识别率分别高10%和24%。 展开更多
关键词 电力变压器 油中溶解气体分析 故障诊断 特征提取 主元分析 核独立主元分析 多核支持向量机
下载PDF
基于SVM-RFE-SFS的基因选择方法 被引量:11
20
作者 游伟 李树涛 谭明奎 《中国生物医学工程学报》 CAS CSCD 北大核心 2010年第1期93-99,共7页
基因微阵列数据通常包含大量与肿瘤分类无关的数据,会严重降低肿瘤诊断的准确率;基因微阵列数据还存在小样本、高维度的问题,也增加了肿瘤诊断的难度,所以必须对其进行基因选择。提出一种新的基于支持向量机(SVM)、联合递归特征去除(RFE... 基因微阵列数据通常包含大量与肿瘤分类无关的数据,会严重降低肿瘤诊断的准确率;基因微阵列数据还存在小样本、高维度的问题,也增加了肿瘤诊断的难度,所以必须对其进行基因选择。提出一种新的基于支持向量机(SVM)、联合递归特征去除(RFE)和序列前向选择(SFS)的基因选择方法。首先利用SVM计算每个基因的排序准则分数,再利用排序准则分数的一阶差分把基因划分为若干小组;对排序准则分数值最小的基因小组进行递归特征去除,消去噪声基因,同时对排序准则分数值最大的基因小组进行序列前向选择,选取有效信息基因。对白血病、结肠癌、乳腺癌基因微阵列数据的实验结果表明,所提出的方法运行效率高、分类性能好。 展开更多
关键词 基因选择 支持向量机 递归特征去除 序列前向选择
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部