期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multiple transition metals modulated hierarchical networks for high performance of metal-ion batteries 被引量:1
1
作者 Jie Liu Chenjie Lou +8 位作者 Jipeng Fu Xuan Sun Jingrong Hou Jiwei Ma Yongjin Chen Xiang Gao Ligang Xu Qi Wei Mingxue Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期604-613,I0015,共11页
Searching anodes with excellent electrochemical performance has been in great demand for rechargeable metal ion batteries. In this contribution, Fe/Co co-doped Ni S with N-based carbon(Fe Co-NiS@NC) derived from trime... Searching anodes with excellent electrochemical performance has been in great demand for rechargeable metal ion batteries. In this contribution, Fe/Co co-doped Ni S with N-based carbon(Fe Co-NiS@NC) derived from trimetallic Prussian blue analogue is designed and synthesized. The composition can be easily adjusted and modulated by multi-metals. In addition, the well-designed carbon nanocubes effectively promote electronic conductivity and buffer the volume change upon charge and discharge cycling, resulting in good capacity and long-term cycle life for both lithium-ion batteries and sodium-ion batteries, with capacities of 1018 m Ah g^(-1)(vs. Li/Li^(+)) and 454 m Ah g^(-1)(vs. Na/Na^(+)), respectively, after 100 cycles.Kinetics studies indicate that the electrochemical behaviors are manipulated by both diffusion and pseudocapacitance processes. These strategies would open new opportunities and potention for novel energy storage. 展开更多
关键词 multiple transition metallic synergy Li-ion batteries Solium-ion batteries In-situ XRD Long-term cycling stability High coulumbic efficiency
下载PDF
Multiple magnetic transitions and magnetocaloric effect of Tb_(4)Coln alloy 被引量:1
2
作者 Remya U.D. Arun K. +4 位作者 Swathi S. Athul S.R. Andrea Dzubinska Marian Reiffers Nagalakshmi R. 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第11期1721-1727,I0003,共8页
We report on the magnetic,magnetocaloric,thermal,and electrical transport properties of Tb_(4)Coln alloy,which crystallizes in two phases,Tb_6Co_(2.1)In_(0.8)(space group Immm)and Tb_(2)In_(0.9)Co_(0.1)(space group P6... We report on the magnetic,magnetocaloric,thermal,and electrical transport properties of Tb_(4)Coln alloy,which crystallizes in two phases,Tb_6Co_(2.1)In_(0.8)(space group Immm)and Tb_(2)In_(0.9)Co_(0.1)(space group P6_(3)/mmc),respectively.The alloy reveals three successive magnetic transitions around T_(1)(163 K),T_(2)(50 K),and T_(3)(29 K),respectively,associated with paramagnetic to ferromagnetic transition and two sequential antiferromagnetic transitions.The low-temperature transition T_(3) follows the first-order magnetic behavior and exhibits the field-induced magnetic transition.Meanwhile,T_(2) and T_(1) are found to be second-order in nature which opens a possibility for hysteresis-free magnetocaloric application.The magnetocaloric properties are determined using different magnetocaloric figures of merits such as-ΔS_(M),ΔT_(ad).RCP,and TEC(10).Additionally,the universal curve behavior in the isothermal entropy change unveils the variation in critical exponents around T_(1) and T_(2) due to the magnetic inhomogeneity in the alloy.Besides,the electrical transport properties of the metallic alloy denote the maximum magnetoresistance of-10%around T_(1). 展开更多
关键词 multiple magnetic transitions Order of magnetic transition Magnetocaloric effect MAGNETORESISTANCE Universal curve behavior Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部