This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the b...This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.展开更多
For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in ...For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.展开更多
In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and no...In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.展开更多
Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works abo...Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.展开更多
This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and t...This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness.展开更多
The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced pr...The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.展开更多
This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst inte...This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio...Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.展开更多
Holographic multiple-input multiple-output(HMIMO)has become an emerging technology for achieving ultra-high frequency spectral efficiency and spatial resolution in future wireless systems.The increasing antenna apertu...Holographic multiple-input multiple-output(HMIMO)has become an emerging technology for achieving ultra-high frequency spectral efficiency and spatial resolution in future wireless systems.The increasing antenna aperture leads to a more significant characterization of the spherical wavefront in near-field communications in HMIMO scenarios.Beam training as a key technique for wireless communication is worth exploring in this near-field scenario.Compared with the widely researched far-field beam training,the increased dimensionality of the search space for near-field beam training poses a challenge to the complexity and accuracy of the proposed algorithm.In this paper,we introduce several typical near-field beam training methods:exhaustive beam training,hierarchical beam training,and multi-beam training that includes equal interval multi-beam training and hash multi-beam training.The performances of these methods are compared through simulation analysis,and their effectiveness is verified on the hardware testbed as well.Additionally,we provide application scenarios,research challenges,and potential future research directions for near-field beam training.展开更多
Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar sys...Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar system, especially in the hostile environment. In such conditions, an efficient subarray selection strategy is proposed for MIMO radar performing tasks of target tracking and detection. The goal of the proposed strategy is to minimize the worst-case predicted posterior Cramer-Rao lower bound(PCRLB) while maximizing the detection probability for a certain region. It is shown that the subarray selection problem is NP-hard, and a modified particle swarm optimization(MPSO) algorithm is developed as the solution strategy. A large number of simulations verify that the MPSO can provide close performance to the exhaustive search(ES) algorithm. Furthermore, the MPSO has the advantages of simpler structure and lower computational complexity than the multi-start local search algorithm.展开更多
The non-fluctuating target detection in low-grazing angle using multiple-input multiple-output(MIMO) radar systems was studied, where the multipath effects are very abundant. The performance of detection can be improv...The non-fluctuating target detection in low-grazing angle using multiple-input multiple-output(MIMO) radar systems was studied, where the multipath effects are very abundant. The performance of detection can be improved via utilizing the multipath echoes. First, the reflection coefficient considering the curved earth effect is derived. Then, the general signal model for MIMO radar is introduced for non-fluctuating target in low-grazing angle. Using the generalized likelihood ratio test(GLRT) criterion, the detector of non-fluctuating target with multipath was analyzed. The simulation results demonstrate that the MIMO radar outperforms the conventional radar in non-fluctuating target detection and show that the performance can be enhanced markedly when the multipath effects are considered.展开更多
This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method f...This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.展开更多
This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signa...This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.展开更多
A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO)...A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO) radar.Two steps are carried out in this method.The decoupling operation between angle and mutual coupling estimates is realized by choosing the auxiliary elements on both sides of the transmit and receive uniform linear arrays(ULAs).Then the ESPRIT method is resilient against the unknown mutual coupling matrix(MCM) and can be directly utilized to estimate the direction of departure(DOD) and the direction of arrival(DOA).Moreover,the mutual coupling coefficient is estimated by finding the solution of the linear constrained optimization problem.The proposed method allows an efficient DOD and DOA estimates with automatic pairing.Simulation results are presented to verify the effectiveness of the proposed method.展开更多
An antenna adjustment strategy is developed for the target tracking problem in the collocated multiple-input multipleoutput(MIMO)radar.The basic technique of this strategy is to optimally allocate antennas by the prio...An antenna adjustment strategy is developed for the target tracking problem in the collocated multiple-input multipleoutput(MIMO)radar.The basic technique of this strategy is to optimally allocate antennas by the prior information in the tracking recursive period,with the objective of enhancing the worst-case estimate precision of multiple targets.On account of the posterior Cramer-Rao lower bound(PCRLB)offering a quantitative measure for target tracking accuracy,the PCRLB of joint direction-of-arrival(DOA)and Doppler is derived and utilized as the optimization criterion.It is shown that the dynamic antenna selection problem is NP-hard,and an efficient technique which combines convex relaxation with local search is put forward as the solution.Simulation results demonstrate the outperformance of the proposed strategy to the fixed antenna configuration and heuristic search algorithm.Moreover,it is able to offer close-to performance of the exhaustive search method.展开更多
Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target paramet...Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target parameter estimation.Sparse recovery is an effective way to address this problem,but it cannot be directly utilized for multi-target parameter estimation in frequency-agile distributed MIMO radars due to spatial diversity.In this paper,we propose an algorithm for multi-target parameter estimation according to the signal model of frequency-agile distributed MIMO radars,by modifying the orthogonal matching pursuit(OMP)algorithm.The effectiveness of the proposed method is then verified by simulation results.展开更多
This paper derives the extended ambiguity function for a bistatic multiple-input multiple-output (MIMO) radar system, which includes the whole radar system parameters: geometric sensor configuration, waveforms, ran...This paper derives the extended ambiguity function for a bistatic multiple-input multiple-output (MIMO) radar system, which includes the whole radar system parameters: geometric sensor configuration, waveforms, range, range rate, target scattering and noise characteristics. Recent research indicates the potential pa- rameter estimate performance of bistatic MIMO radars. And this ambiguity function can be used to analyze the parameter estimate performance for the relationship with the Cramer-Rao bounds of the estimated parameters. Finally, some examples are given to demonstrate the good parameter estimate performance of the bistatic MIMO radar, using the quasi-orthogonal waveforms based on Lorenz chaotic systems.展开更多
The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-...The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.展开更多
A joint resource allocation scheme concerned with the sensor subset,power and bandwidth for range-only target tracking in multiple-input multiple-output(MIMO)radar systems is proposed.By selecting an optimal subset of...A joint resource allocation scheme concerned with the sensor subset,power and bandwidth for range-only target tracking in multiple-input multiple-output(MIMO)radar systems is proposed.By selecting an optimal subset of sensors with the predetermined size and implementing the power allocation and bandwidth strategies among them,this algorithm can help achieving a better performance within the same resource constraints.Firstly,the Bayesian Cramer-Rao bound(BCRB)is derived from it.Secondly,a criterion for minimizing the BCRB at the target location among all targets tracking in a certain range is derived.Thirdly,the optimization problem involved with three variable vectors is formulated,which can be simplified by deriving the relationship between the optimal power allocation vector and the bandwidth allocation vector.Then,the simplified optimization problem is solved by the cyclic minimization algorithm incorporated with the sequential parametric convex approximation(SPCA)algorithm.Finally,the validity of the proposed method is demonstrated with simulation results.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61071163,61271327,and 61471191)the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics,China(Grant No.BCXJ14-08)+2 种基金the Funding of Innovation Program for Graduate Education of Jiangsu Province,China(Grant No.KYLX 0277)the Fundamental Research Funds for the Central Universities,China(Grant No.3082015NP2015504)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA),China
文摘This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.
基金This work was supported by the National Natural Science Foundation of China(62073093)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q19098)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(LH2020F017)the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology.
文摘For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.
文摘In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61331007,61361166008,and 61401065)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120185130001)
文摘Utilizing channel reciprocity, time reversal(TR) technique increases the signal-to-noise ratio(SNR) at the receiver with very low transmitter complexity in complex multipath environment. Present research works about TR multiple-input multiple-output(MIMO) communication all focus on the system implementation and network building. The aim of this work is to analyze the influence of antenna coupling on the capacity of wideband TR MIMO system, which is a realistic question in designing a practical communication system. It turns out that antenna coupling stabilizes the capacity in a small variation range with statistical wideband channel response. Meanwhile, antenna coupling only causes a slight detriment to the channel capacity in a wideband TR MIMO system. Comparatively, uncorrelated stochastic channels without coupling exhibit a wider range of random capacity distribution which greatly depends on the statistical channel. The conclusions drawn from information difference entropy theory provide a guideline for designing better high-performance wideband TR MIMO communication systems.
文摘This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness.
文摘The increase in the number of devices with a massive revolution in mobile technology leads to increase the capacity of the wireless communications net-works. Multi-user Multiple-Input Multiple-Output is an advanced procedure of Multiple-Input Multiple-Output, which improves the performance of Wireless Local Area Networks. Moreover, Multi-user Multiple-Input Multiple-Output leads the Wireless Local Area Networks toward covering more areas. Due to the growth of the number of clients and requirements, researchers try to improve the performance of the Medium Access Control protocol of Multi-user Multiple-Input Multiple-Output technology to serve the user better, by supporting different data sizes, and reducing the waiting time to be able to transmit data quickly. In this paper, we propose a Clustering Multi-user Multiple-Input Multiple-Output protocol, which is an improved Medium Access Control protocol for Multi-user Multiple-Input Multiple-Out-put based on MIMOMate clustering technique and Padovan Backoff Algorithm. Utilizing MIMOMMate focuses on the signal power which only serves the user in that cluster, minimizes the energy consumption and increases the capacity. The implementation of Clustering Multi-user Multiple-Input Multiple-Output performs on the Network Simulator (NS2.34) platform. The results show that Clustering Multi-user Multiple-Input Multiple-Output protocol improves the throughput by 89.8%, and reduces the latency of wireless communication by 43.9% in scenarios with contention. As a result, the overall performances of the network are improved.
基金supported by the National Key Laboratory of Wireless Communications Foundation,China (IFN20230204)。
文摘This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.62061024the Project of Gansu Province Science and Technology Department under Grant No.22ZD6GA055.
文摘Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.
文摘Holographic multiple-input multiple-output(HMIMO)has become an emerging technology for achieving ultra-high frequency spectral efficiency and spatial resolution in future wireless systems.The increasing antenna aperture leads to a more significant characterization of the spherical wavefront in near-field communications in HMIMO scenarios.Beam training as a key technique for wireless communication is worth exploring in this near-field scenario.Compared with the widely researched far-field beam training,the increased dimensionality of the search space for near-field beam training poses a challenge to the complexity and accuracy of the proposed algorithm.In this paper,we introduce several typical near-field beam training methods:exhaustive beam training,hierarchical beam training,and multi-beam training that includes equal interval multi-beam training and hash multi-beam training.The performances of these methods are compared through simulation analysis,and their effectiveness is verified on the hardware testbed as well.Additionally,we provide application scenarios,research challenges,and potential future research directions for near-field beam training.
基金supported by the National Natural Science Foundation of China(61601504)。
文摘Due to the requirement of anti-interception and the limitation of processing capability of the fusion center, the subarray selection is very important for the distributed multiple-input multiple-output(MIMO) radar system, especially in the hostile environment. In such conditions, an efficient subarray selection strategy is proposed for MIMO radar performing tasks of target tracking and detection. The goal of the proposed strategy is to minimize the worst-case predicted posterior Cramer-Rao lower bound(PCRLB) while maximizing the detection probability for a certain region. It is shown that the subarray selection problem is NP-hard, and a modified particle swarm optimization(MPSO) algorithm is developed as the solution strategy. A large number of simulations verify that the MPSO can provide close performance to the exhaustive search(ES) algorithm. Furthermore, the MPSO has the advantages of simpler structure and lower computational complexity than the multi-start local search algorithm.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(11JJ1010) supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China
文摘The non-fluctuating target detection in low-grazing angle using multiple-input multiple-output(MIMO) radar systems was studied, where the multipath effects are very abundant. The performance of detection can be improved via utilizing the multipath echoes. First, the reflection coefficient considering the curved earth effect is derived. Then, the general signal model for MIMO radar is introduced for non-fluctuating target in low-grazing angle. Using the generalized likelihood ratio test(GLRT) criterion, the detector of non-fluctuating target with multipath was analyzed. The simulation results demonstrate that the MIMO radar outperforms the conventional radar in non-fluctuating target detection and show that the performance can be enhanced markedly when the multipath effects are considered.
基金supported by the National Natural Science Foundation of China(6137116961179006)+1 种基金the Jiangsu Postdoctoral Research Funding Plan(1301013B)the Nanjing University of Aeronautics and Astronautics Funding(NZ2013208)
文摘This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.
基金supported by the Foundation of Chinese People’s Liberation Army General Equipment Department(41101020303)
文摘This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.
基金supported by the National Natural Science Foundation of China (60702015)
文摘A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO) radar.Two steps are carried out in this method.The decoupling operation between angle and mutual coupling estimates is realized by choosing the auxiliary elements on both sides of the transmit and receive uniform linear arrays(ULAs).Then the ESPRIT method is resilient against the unknown mutual coupling matrix(MCM) and can be directly utilized to estimate the direction of departure(DOD) and the direction of arrival(DOA).Moreover,the mutual coupling coefficient is estimated by finding the solution of the linear constrained optimization problem.The proposed method allows an efficient DOD and DOA estimates with automatic pairing.Simulation results are presented to verify the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61601504)
文摘An antenna adjustment strategy is developed for the target tracking problem in the collocated multiple-input multipleoutput(MIMO)radar.The basic technique of this strategy is to optimally allocate antennas by the prior information in the tracking recursive period,with the objective of enhancing the worst-case estimate precision of multiple targets.On account of the posterior Cramer-Rao lower bound(PCRLB)offering a quantitative measure for target tracking accuracy,the PCRLB of joint direction-of-arrival(DOA)and Doppler is derived and utilized as the optimization criterion.It is shown that the dynamic antenna selection problem is NP-hard,and an efficient technique which combines convex relaxation with local search is put forward as the solution.Simulation results demonstrate the outperformance of the proposed strategy to the fixed antenna configuration and heuristic search algorithm.Moreover,it is able to offer close-to performance of the exhaustive search method.
文摘Introducing frequency agility into a distributed multipleinput multiple-output(MIMO)radar can significantly enhance its anti-jamming ability.However,it would cause the sidelobe pedestal problem in multi-target parameter estimation.Sparse recovery is an effective way to address this problem,but it cannot be directly utilized for multi-target parameter estimation in frequency-agile distributed MIMO radars due to spatial diversity.In this paper,we propose an algorithm for multi-target parameter estimation according to the signal model of frequency-agile distributed MIMO radars,by modifying the orthogonal matching pursuit(OMP)algorithm.The effectiveness of the proposed method is then verified by simulation results.
基金supported by the Innovation Project for Excellent Postgraduates of Hunan Province (CX2011B018)the Innovation Project for Excellent Postgraduates of National University of Defense Technology (B110402)
文摘This paper derives the extended ambiguity function for a bistatic multiple-input multiple-output (MIMO) radar system, which includes the whole radar system parameters: geometric sensor configuration, waveforms, range, range rate, target scattering and noise characteristics. Recent research indicates the potential pa- rameter estimate performance of bistatic MIMO radars. And this ambiguity function can be used to analyze the parameter estimate performance for the relationship with the Cramer-Rao bounds of the estimated parameters. Finally, some examples are given to demonstrate the good parameter estimate performance of the bistatic MIMO radar, using the quasi-orthogonal waveforms based on Lorenz chaotic systems.
基金supported in part by the Funding for Outstanding Doctoral Dissertation in NUAA (No.BCXJ1503)the Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX15_0281)the Fundamental Research Funds for the Central Universities
文摘The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(615015136140146941301481)
文摘A joint resource allocation scheme concerned with the sensor subset,power and bandwidth for range-only target tracking in multiple-input multiple-output(MIMO)radar systems is proposed.By selecting an optimal subset of sensors with the predetermined size and implementing the power allocation and bandwidth strategies among them,this algorithm can help achieving a better performance within the same resource constraints.Firstly,the Bayesian Cramer-Rao bound(BCRB)is derived from it.Secondly,a criterion for minimizing the BCRB at the target location among all targets tracking in a certain range is derived.Thirdly,the optimization problem involved with three variable vectors is formulated,which can be simplified by deriving the relationship between the optimal power allocation vector and the bandwidth allocation vector.Then,the simplified optimization problem is solved by the cyclic minimization algorithm incorporated with the sequential parametric convex approximation(SPCA)algorithm.Finally,the validity of the proposed method is demonstrated with simulation results.