For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in ...For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.展开更多
Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO...Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.展开更多
频控阵-多输入多输出(Frequency Diverse Array-Multiple Input Multiple Output,FDA-MIMO)雷达是一种新体制雷达,其发射频率分集特性带来了额外的距离维信息,然而采样误差同样带来了导向矢量失配的问题,不仅如此,角度误差的存在也会进...频控阵-多输入多输出(Frequency Diverse Array-Multiple Input Multiple Output,FDA-MIMO)雷达是一种新体制雷达,其发射频率分集特性带来了额外的距离维信息,然而采样误差同样带来了导向矢量失配的问题,不仅如此,角度误差的存在也会进一步加重导向矢量的失配,极大地影响检测器的检测性能。此外,目标速度过快也会对FDA-MIMO雷达的目标检测性能产生影响。速度带来的影响具体表现在两个方面:一方面会导致目标的距离走动,从而导致不同慢时间的回波包络不能对齐,无法相干积累;二是频率增量引起的多普勒扩展,使得不同发射通道的多普勒频率不一样,这会进一步影响检测性能。针对上述问题,本文针对运动目标情况下的目标检测问题进行研究,为了解决目标运动带来的距离徙动和多普勒扩展效应,引入Keystone变换进行校正。此外,为了提升阵列失配条件下的目标检测性能,本文引入子空间模型,提出了距离角度失配情况下的子空间构建方法,并基于广义似然比检验(Generalized Likelihood Ratio Test,GLRT)准则推导了FDA-MIMO雷达在距离和角度失配条件下的自适应检测器。仿真结果表明:在高斯白噪声背景下,所提算法可以校正运动目标在速度较快情况下导致的距离徙动和多普勒扩展效应,且在阵列距离和角度失配条件下的检测性能优于传统的GLRT检测器。此外本文所提Keystone-空域处理检测器与Keystone-全空时处理检测器的性能接近,且计算复杂度更低。展开更多
多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算...多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。展开更多
Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output ...Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.展开更多
This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension C...This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension Capon algorithm therein. Compared with the reduced-dimension Capon algorithm which requires pair matching between the two-dimensional angle estimation, the pro- posed algorithm can obtain automatically paired DOD and DOA estimation without debasing the performance of angle estimation in bistatic MIMO radar. Furthermore, the proposed algorithm has a lower complexity than the reduced-dimension Capon algorithm, and it is suitable for non-uniform linear arrays. The complexity of the proposed algorithm is analyzed and the Cramer-Rao bound (CRB) is also derived. Simulation results verify the usefulness of the proposed algorithm.展开更多
A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population...A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption.展开更多
The non-fluctuating target detection in low-grazing angle using multiple-input multiple-output(MIMO) radar systems was studied, where the multipath effects are very abundant. The performance of detection can be improv...The non-fluctuating target detection in low-grazing angle using multiple-input multiple-output(MIMO) radar systems was studied, where the multipath effects are very abundant. The performance of detection can be improved via utilizing the multipath echoes. First, the reflection coefficient considering the curved earth effect is derived. Then, the general signal model for MIMO radar is introduced for non-fluctuating target in low-grazing angle. Using the generalized likelihood ratio test(GLRT) criterion, the detector of non-fluctuating target with multipath was analyzed. The simulation results demonstrate that the MIMO radar outperforms the conventional radar in non-fluctuating target detection and show that the performance can be enhanced markedly when the multipath effects are considered.展开更多
According to the signal processing characteristic of MIMO radars,an adaptive dwell scheduling algorithm is proposed.It is based on a novel pulse interleaving technique,which makes full use of transmitting,waiting and ...According to the signal processing characteristic of MIMO radars,an adaptive dwell scheduling algorithm is proposed.It is based on a novel pulse interleaving technique,which makes full use of transmitting,waiting and receiving durations of radar dwells.The utilization of transmitting duration is unique for MIMO radars and is realized through transmitting duration overlapping.Simulation results show that,compared with the conventional scheduling algorithm,the scheduling performance of MIMO radars can be improved effectively by the proposed algorithm,and the scheduling rule can be chosen arbitrarily when using the proposed algorithm.展开更多
In view of the low performance of adaptive asymmetric joint diagonalization(AAJD), especially its failure in tracking high maneuvering targets, an adaptive asymmetric joint diagonalization with deflation(AAJDd) al...In view of the low performance of adaptive asymmetric joint diagonalization(AAJD), especially its failure in tracking high maneuvering targets, an adaptive asymmetric joint diagonalization with deflation(AAJDd) algorithm is proposed. The AAJDd algorithm improves performance by estimating the direction of departure(DOD) and direction of arrival(DOA) directly, avoiding the reuse of the previous moment information in the AAJD algorithm.On this basis, the idea of sequential estimation of the principal component is introduced to turn the matrix operation into a constant operation, reducing the amount of computation and speeding up the convergence. Meanwhile, the eigenvalue is obtained, which can be used to estimate the number of targets. Then, the estimation of signal parameters via rotational invariance technique(ESPRIT) algorithm is improved to realize the automatic matching and association of DOD and DOA. The simulation results show that the AAJDd algorithm has higher tracking performance than the AAJD algorithm, especially when the high maneuvering target is tracked. The efficiency of the proposed method is verified.展开更多
This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method f...This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.展开更多
An effective method of multiple input multiple output (MIMO) radar weak target detection is proposed based on the Hough transform. The detection time duration is divided into multiple coherent processing intervals ...An effective method of multiple input multiple output (MIMO) radar weak target detection is proposed based on the Hough transform. The detection time duration is divided into multiple coherent processing intervals (CPIs). Within each CPI, conventional methods such as fast Fourier transform (FFT) is exploit to coherent inte- grating in same range cell. Furthermore, noncoherent integration through several range cells can be implemented by Hough transform among all CPIs. Thus, higher integration gain can be obtained. Simulation results are also given to demonstrate that the detection performance of weak moving target can be dramatically improved.展开更多
The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multi...The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multiple output (MIMO) radars. To gain some insight into the behavior of the CRB, the CRB with a set of given orthogonal waveforms is studied as a specific case. Second, a maximum likelihood (ML) estimation algorithm is proposed. The mean square error (MSE) of the ML estimation of target location and velocity is obtained by Monte Carlo simulation and it approaches CRB in the high signal-to-noise ratio (SNR) region.展开更多
基金This work was supported by the National Natural Science Foundation of China(62073093)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q19098)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(LH2020F017)the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology.
文摘For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.
基金Supported by the Aeronautic Science Foundation of China(2008ZC52026)the Innovation Foundation of Nanjing University of Aeronautics and Astronautics~~
文摘Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.
文摘频控阵-多输入多输出(Frequency Diverse Array-Multiple Input Multiple Output,FDA-MIMO)雷达是一种新体制雷达,其发射频率分集特性带来了额外的距离维信息,然而采样误差同样带来了导向矢量失配的问题,不仅如此,角度误差的存在也会进一步加重导向矢量的失配,极大地影响检测器的检测性能。此外,目标速度过快也会对FDA-MIMO雷达的目标检测性能产生影响。速度带来的影响具体表现在两个方面:一方面会导致目标的距离走动,从而导致不同慢时间的回波包络不能对齐,无法相干积累;二是频率增量引起的多普勒扩展,使得不同发射通道的多普勒频率不一样,这会进一步影响检测性能。针对上述问题,本文针对运动目标情况下的目标检测问题进行研究,为了解决目标运动带来的距离徙动和多普勒扩展效应,引入Keystone变换进行校正。此外,为了提升阵列失配条件下的目标检测性能,本文引入子空间模型,提出了距离角度失配情况下的子空间构建方法,并基于广义似然比检验(Generalized Likelihood Ratio Test,GLRT)准则推导了FDA-MIMO雷达在距离和角度失配条件下的自适应检测器。仿真结果表明:在高斯白噪声背景下,所提算法可以校正运动目标在速度较快情况下导致的距离徙动和多普勒扩展效应,且在阵列距离和角度失配条件下的检测性能优于传统的GLRT检测器。此外本文所提Keystone-空域处理检测器与Keystone-全空时处理检测器的性能接近,且计算复杂度更低。
文摘多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。
基金supported by the National Natural Science Foundation of China(6123101761671352)
文摘Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.
基金supported by the National Natural Science Foundation of China(6080105261271327)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(1201039C)the China Postdoctoral Science Foundation (2012M521099)Hubei Key Laboratory of Intelligent Wireless Communications(IWC2012002)
文摘This paper discusses the problem of direction of departure (DOD) and direction of arrival (DOA) estimation for a bistatic multiple input multiple output (MIMO) radar, and proposes an improved reduced-dimension Capon algorithm therein. Compared with the reduced-dimension Capon algorithm which requires pair matching between the two-dimensional angle estimation, the pro- posed algorithm can obtain automatically paired DOD and DOA estimation without debasing the performance of angle estimation in bistatic MIMO radar. Furthermore, the proposed algorithm has a lower complexity than the reduced-dimension Capon algorithm, and it is suitable for non-uniform linear arrays. The complexity of the proposed algorithm is analyzed and the Cramer-Rao bound (CRB) is also derived. Simulation results verify the usefulness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6107116361071164+5 种基金6147119161501233)the Fundamental Research Funds for the Central Universities(NP2014504)the Aeronautical Science Foundation(20152052026)the Electronic & Information School of Yangtze University Innovation Foundation(2016-DXCX-05)the Priority Academic Program Development of Jiangsu Higher Education Institutions
基金supported by the National Natural Science Foundation of China (60601016)
文摘A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(11JJ1010) supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China
文摘The non-fluctuating target detection in low-grazing angle using multiple-input multiple-output(MIMO) radar systems was studied, where the multipath effects are very abundant. The performance of detection can be improved via utilizing the multipath echoes. First, the reflection coefficient considering the curved earth effect is derived. Then, the general signal model for MIMO radar is introduced for non-fluctuating target in low-grazing angle. Using the generalized likelihood ratio test(GLRT) criterion, the detector of non-fluctuating target with multipath was analyzed. The simulation results demonstrate that the MIMO radar outperforms the conventional radar in non-fluctuating target detection and show that the performance can be enhanced markedly when the multipath effects are considered.
基金supported by the National Natural Science Foundation of China(6110117161032010)
文摘According to the signal processing characteristic of MIMO radars,an adaptive dwell scheduling algorithm is proposed.It is based on a novel pulse interleaving technique,which makes full use of transmitting,waiting and receiving durations of radar dwells.The utilization of transmitting duration is unique for MIMO radars and is realized through transmitting duration overlapping.Simulation results show that,compared with the conventional scheduling algorithm,the scheduling performance of MIMO radars can be improved effectively by the proposed algorithm,and the scheduling rule can be chosen arbitrarily when using the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6167145361201379)Anhui Natural Science Foundation of China(1608085MF123)
文摘In view of the low performance of adaptive asymmetric joint diagonalization(AAJD), especially its failure in tracking high maneuvering targets, an adaptive asymmetric joint diagonalization with deflation(AAJDd) algorithm is proposed. The AAJDd algorithm improves performance by estimating the direction of departure(DOD) and direction of arrival(DOA) directly, avoiding the reuse of the previous moment information in the AAJD algorithm.On this basis, the idea of sequential estimation of the principal component is introduced to turn the matrix operation into a constant operation, reducing the amount of computation and speeding up the convergence. Meanwhile, the eigenvalue is obtained, which can be used to estimate the number of targets. Then, the estimation of signal parameters via rotational invariance technique(ESPRIT) algorithm is improved to realize the automatic matching and association of DOD and DOA. The simulation results show that the AAJDd algorithm has higher tracking performance than the AAJD algorithm, especially when the high maneuvering target is tracked. The efficiency of the proposed method is verified.
基金supported by the National Natural Science Foundation of China(6137116961179006)+1 种基金the Jiangsu Postdoctoral Research Funding Plan(1301013B)the Nanjing University of Aeronautics and Astronautics Funding(NZ2013208)
文摘This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.
文摘An effective method of multiple input multiple output (MIMO) radar weak target detection is proposed based on the Hough transform. The detection time duration is divided into multiple coherent processing intervals (CPIs). Within each CPI, conventional methods such as fast Fourier transform (FFT) is exploit to coherent inte- grating in same range cell. Furthermore, noncoherent integration through several range cells can be implemented by Hough transform among all CPIs. Thus, higher integration gain can be obtained. Simulation results are also given to demonstrate that the detection performance of weak moving target can be dramatically improved.
基金supported by the National Natural Science Foundation of China(61171120)the Key National Ministry Foundation of China(9140A07020212JW0101)the Foundation of Tsinghua University(20101081772)
文摘The optimal estimation performance of target parameters is studied. First, the general form of Cramer-Rao bound (CRB) for joint estimation of target location and velocity is derived for coherent multiple input multiple output (MIMO) radars. To gain some insight into the behavior of the CRB, the CRB with a set of given orthogonal waveforms is studied as a specific case. Second, a maximum likelihood (ML) estimation algorithm is proposed. The mean square error (MSE) of the ML estimation of target location and velocity is obtained by Monte Carlo simulation and it approaches CRB in the high signal-to-noise ratio (SNR) region.