Automated Guided Vehicles(AGVs)have been introduced into various applications,such as automated warehouse systems,flexible manufacturing systems,and container terminal systems.However,few publications have outlined pr...Automated Guided Vehicles(AGVs)have been introduced into various applications,such as automated warehouse systems,flexible manufacturing systems,and container terminal systems.However,few publications have outlined problems in need of attention in AGV applications comprehensively.In this paper,several key issues and essential models are presented.First,the advantages and disadvantages of centralized and decentralized AGVs systems were compared;second,warehouse layout and operation optimization were introduced,including some omitted areas,such as AGVs fleet size and electrical energy management;third,AGVs scheduling algorithms in chessboardlike environments were analyzed;fourth,the classical route-planning algorithms for single AGV and multiple AGVs were presented,and some Artificial Intelligence(AI)-based decision-making algorithms were reviewed.Furthermore,a novel idea for accelerating route planning by combining Reinforcement Learning(RL)andDijkstra’s algorithm was presented,and a novel idea of the multi-AGV route-planning method of combining dynamic programming and Monte-Carlo tree search was proposed to reduce the energy cost of systems.展开更多
With the wide application of automated guided vehicles(AGVs) in large scale outdoor scenarios with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.The effective multi-agent path...With the wide application of automated guided vehicles(AGVs) in large scale outdoor scenarios with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.The effective multi-agent path finding(MAPF) algorithm is urgently needed to ensure the efficiency and realizability of the whole system. The complex terrain of outdoor scenarios is fully considered by using different values of passage cost to quantify different terrain types. The objective of the MAPF problem is to minimize the cost of passage while the Manhattan distance of paths and the time of passage are also evaluated for a comprehensive comparison. The pre-path-planning and real-time-conflict based greedy(PRG) algorithm is proposed as the solution. Simulation is conducted and the proposed PRG algorithm is compared with waiting-stop A^(*) and conflict based search(CBS) algorithms. Results show that the PRG algorithm outperforms the waiting-stop A^(*) algorithm in all three performance indicators,and it is more applicable than the CBS algorithm when a large number of AGVs are working collaboratively with frequent collisions.展开更多
The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain inde...The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.展开更多
To solve the problem of small amount of machining centers in small and medium flexible manufacture systems(FMS), a scheduling mode of single automated guided vehicle(AGV) is adopted to deal with multiple transport req...To solve the problem of small amount of machining centers in small and medium flexible manufacture systems(FMS), a scheduling mode of single automated guided vehicle(AGV) is adopted to deal with multiple transport requests in this paper. Firstly, a workshop scheduling mechanism of AGV is analyzed and a mathematical model is established using Genetic Algorithm. According to several sets of transport priority of AGV, processes of FMS are encoded, and fitness function, selection, crossover, and variation methods are designed. The transport priority which has the least impact on scheduling results is determined based on the simulation analysis of Genetic Algorithm, and the makespan, the longest waiting time, and optimal route of the car are calculated. According to the actual processing situation of the workshop, feasibility of this method is verified successfully to provide an effective solution to the scheduling problem of single AGV.展开更多
The paper presents the development and performance of a kinematics control scheme for the AGV based on inductive guidance in transporting newsprint rolls. The required error is pre-computed using a kinematics model of...The paper presents the development and performance of a kinematics control scheme for the AGV based on inductive guidance in transporting newsprint rolls. The required error is pre-computed using a kinematics model of the AGV taking into account the effect of various factors that contribute to improve tracking performance of the AGV. Simulation and experimental results illustrate that the kinematics model performs well and the results of various factors contribute to tracking performance of the AGV.展开更多
Mobile robot has been one of the researches focuses in this era due to the demands in automation.Many industry players have been using mobile robot in their industrial plant for the purpose of reducing manual labour a...Mobile robot has been one of the researches focuses in this era due to the demands in automation.Many industry players have been using mobile robot in their industrial plant for the purpose of reducing manual labour as well as ensuring more efficient and systematic process.The mobile robot for industrial usage is typically called as Automated Guided Vehicle(AGV).The advances in the navigation technology allows the AGV to be used for many tasks such as for carrying load to pre-determined locations sent from mobile app,stock management and pallet handling.More recently,the concept of Industry 4.0 has been widely practiced in the industries,where important process data are exchange over the internet for an improved management.This paper will therefore discuss the development of Internet of Things(IoT)bases mobile robot for AGV application.In this project a mobile robot platform is designed and fabricated.The robot is controlled to navigate from one location to another using line following mechanism.Mobile App is designed to communicate with the robot through the Internet of Things(IoT).RFID tags are used to identify the locations predetermined by user.The results show that the prototype is able to follow line and go to any location that was preregistered from the App through the IoT.The mobile robot is also able to avoid collision and any obstacles that exist on its way to perform any task inside the workplace.展开更多
The recent rapid development of China’s foreign trade has led to the significant increase in waterway transportation and automated container ports. Automated terminals can significantly improve the loading and unload...The recent rapid development of China’s foreign trade has led to the significant increase in waterway transportation and automated container ports. Automated terminals can significantly improve the loading and unloading efficiency of container terminals. These terminals can also increase the port’s transportation volume while ensuring the quality of cargo loading and unloading, which has become an inevitable trend in the future development of ports. However, the continuous growth of the port’s transportation volume has increased the horizontal transportation pressure on the automated terminal, and the problems of route conflicts and road locks faced by automated guided vehicles (AGV) have become increasingly prominent. Accordingly, this work takes Xiamen Yuanhai automated container terminal as an example. This work focuses on analyzing the interference problem of path conflict in its horizontal transportation AGV scheduling. Results show that path conflict, the most prominent interference factor, will cause AGV scheduling to be unable to execute the original plan. Consequently, the disruption management was used to establish a disturbance recovery model, and the Dijkstra algorithm for combining with time windows is adopted to plan a conflict-free path. Based on the comparison with the rescheduling method, the research obtains that the deviation of the transportation path and the deviation degree of the transportation path under the disruption management method are much lower than those of the rescheduling method. The transportation path deviation degree of the disruption management method is only 5.56%. Meanwhile, the deviation degree of the transportation path under the rescheduling method is 44.44%.展开更多
The position control problem of differential-driven automated guided vehicles(AGVs)based on the prescribed-time control method is studied.First,an innovative orientation error function is proposed by an auxiliary arcs...The position control problem of differential-driven automated guided vehicles(AGVs)based on the prescribed-time control method is studied.First,an innovative orientation error function is proposed by an auxiliary arcsine function about the orientation angle.Thus,the problem of position control of AGV is transformed into the stabilisation control of the kinematic system.Second,by introducing a reserved time parameter and a smooth switching function,a novel time-varying scaling function is proposed.This novel scaling function avoids the risk of infinite gain in the conventional prescribed-time control method while ensuring the smoothness of control laws.Then,an improved velocity constraint function is proposed using the Gaussian function.Compared with the existing constraint function,the proposed method not only has more smoothness but also solves the balance point errors caused by the large AGV orientation errors.The presented method ensures that the AGV reaches the target position in a prescribed time.Hence,the upper bound of the AGV system state can be determined by adjusting parameters.Matlab simulation results show that the proposed controller can effectively make the AGV system state satisfy the prescribed bound.展开更多
文摘Automated Guided Vehicles(AGVs)have been introduced into various applications,such as automated warehouse systems,flexible manufacturing systems,and container terminal systems.However,few publications have outlined problems in need of attention in AGV applications comprehensively.In this paper,several key issues and essential models are presented.First,the advantages and disadvantages of centralized and decentralized AGVs systems were compared;second,warehouse layout and operation optimization were introduced,including some omitted areas,such as AGVs fleet size and electrical energy management;third,AGVs scheduling algorithms in chessboardlike environments were analyzed;fourth,the classical route-planning algorithms for single AGV and multiple AGVs were presented,and some Artificial Intelligence(AI)-based decision-making algorithms were reviewed.Furthermore,a novel idea for accelerating route planning by combining Reinforcement Learning(RL)andDijkstra’s algorithm was presented,and a novel idea of the multi-AGV route-planning method of combining dynamic programming and Monte-Carlo tree search was proposed to reduce the energy cost of systems.
基金Supported by the National Key Research and Development Program of China(No.2020YFC1807904).
文摘With the wide application of automated guided vehicles(AGVs) in large scale outdoor scenarios with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.The effective multi-agent path finding(MAPF) algorithm is urgently needed to ensure the efficiency and realizability of the whole system. The complex terrain of outdoor scenarios is fully considered by using different values of passage cost to quantify different terrain types. The objective of the MAPF problem is to minimize the cost of passage while the Manhattan distance of paths and the time of passage are also evaluated for a comprehensive comparison. The pre-path-planning and real-time-conflict based greedy(PRG) algorithm is proposed as the solution. Simulation is conducted and the proposed PRG algorithm is compared with waiting-stop A^(*) and conflict based search(CBS) algorithms. Results show that the PRG algorithm outperforms the waiting-stop A^(*) algorithm in all three performance indicators,and it is more applicable than the CBS algorithm when a large number of AGVs are working collaboratively with frequent collisions.
文摘The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.
基金Supported by the National Natural Science Foundation of China(No.51765043)
文摘To solve the problem of small amount of machining centers in small and medium flexible manufacture systems(FMS), a scheduling mode of single automated guided vehicle(AGV) is adopted to deal with multiple transport requests in this paper. Firstly, a workshop scheduling mechanism of AGV is analyzed and a mathematical model is established using Genetic Algorithm. According to several sets of transport priority of AGV, processes of FMS are encoded, and fitness function, selection, crossover, and variation methods are designed. The transport priority which has the least impact on scheduling results is determined based on the simulation analysis of Genetic Algorithm, and the makespan, the longest waiting time, and optimal route of the car are calculated. According to the actual processing situation of the workshop, feasibility of this method is verified successfully to provide an effective solution to the scheduling problem of single AGV.
文摘The paper presents the development and performance of a kinematics control scheme for the AGV based on inductive guidance in transporting newsprint rolls. The required error is pre-computed using a kinematics model of the AGV taking into account the effect of various factors that contribute to improve tracking performance of the AGV. Simulation and experimental results illustrate that the kinematics model performs well and the results of various factors contribute to tracking performance of the AGV.
文摘Mobile robot has been one of the researches focuses in this era due to the demands in automation.Many industry players have been using mobile robot in their industrial plant for the purpose of reducing manual labour as well as ensuring more efficient and systematic process.The mobile robot for industrial usage is typically called as Automated Guided Vehicle(AGV).The advances in the navigation technology allows the AGV to be used for many tasks such as for carrying load to pre-determined locations sent from mobile app,stock management and pallet handling.More recently,the concept of Industry 4.0 has been widely practiced in the industries,where important process data are exchange over the internet for an improved management.This paper will therefore discuss the development of Internet of Things(IoT)bases mobile robot for AGV application.In this project a mobile robot platform is designed and fabricated.The robot is controlled to navigate from one location to another using line following mechanism.Mobile App is designed to communicate with the robot through the Internet of Things(IoT).RFID tags are used to identify the locations predetermined by user.The results show that the prototype is able to follow line and go to any location that was preregistered from the App through the IoT.The mobile robot is also able to avoid collision and any obstacles that exist on its way to perform any task inside the workplace.
文摘The recent rapid development of China’s foreign trade has led to the significant increase in waterway transportation and automated container ports. Automated terminals can significantly improve the loading and unloading efficiency of container terminals. These terminals can also increase the port’s transportation volume while ensuring the quality of cargo loading and unloading, which has become an inevitable trend in the future development of ports. However, the continuous growth of the port’s transportation volume has increased the horizontal transportation pressure on the automated terminal, and the problems of route conflicts and road locks faced by automated guided vehicles (AGV) have become increasingly prominent. Accordingly, this work takes Xiamen Yuanhai automated container terminal as an example. This work focuses on analyzing the interference problem of path conflict in its horizontal transportation AGV scheduling. Results show that path conflict, the most prominent interference factor, will cause AGV scheduling to be unable to execute the original plan. Consequently, the disruption management was used to establish a disturbance recovery model, and the Dijkstra algorithm for combining with time windows is adopted to plan a conflict-free path. Based on the comparison with the rescheduling method, the research obtains that the deviation of the transportation path and the deviation degree of the transportation path under the disruption management method are much lower than those of the rescheduling method. The transportation path deviation degree of the disruption management method is only 5.56%. Meanwhile, the deviation degree of the transportation path under the rescheduling method is 44.44%.
基金supported by the Scientific Research Fund of the Zhejiang Provincial Education Department under Grants No.Y202146005 and No.Y202248462the General Scientific Project of Huzhou University under Grant No.2021XJKJ04+1 种基金the Huzhou University Scientific Research Innovation Project under Grant No.2022KYCX58,the Zhejiang Province New Young Talent Plan Project in 2022 under Grant No.2022R431B021the Zhejiang Provincial Education Department General Research Project in 2022 under Grant No.Y202250212.
文摘The position control problem of differential-driven automated guided vehicles(AGVs)based on the prescribed-time control method is studied.First,an innovative orientation error function is proposed by an auxiliary arcsine function about the orientation angle.Thus,the problem of position control of AGV is transformed into the stabilisation control of the kinematic system.Second,by introducing a reserved time parameter and a smooth switching function,a novel time-varying scaling function is proposed.This novel scaling function avoids the risk of infinite gain in the conventional prescribed-time control method while ensuring the smoothness of control laws.Then,an improved velocity constraint function is proposed using the Gaussian function.Compared with the existing constraint function,the proposed method not only has more smoothness but also solves the balance point errors caused by the large AGV orientation errors.The presented method ensures that the AGV reaches the target position in a prescribed time.Hence,the upper bound of the AGV system state can be determined by adjusting parameters.Matlab simulation results show that the proposed controller can effectively make the AGV system state satisfy the prescribed bound.