Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ...Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.展开更多
Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di...Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.展开更多
In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geo...In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.展开更多
Sedimentary heterogeneity conditions of Catania Plain quaternary aquifer (CPQA), the wider alluvial multi-aquifer system of Sicily, were rebuilt to simulate and quantify groundwater flow. Transition probabilities base...Sedimentary heterogeneity conditions of Catania Plain quaternary aquifer (CPQA), the wider alluvial multi-aquifer system of Sicily, were rebuilt to simulate and quantify groundwater flow. Transition probabilities based on a Markov Chain (MC) and Sequential Indicator Simulation (SIS) are the structure-imitating simulators utilized for generating stochastic distributions of hydraulic conductivity fields of CPQA, basing on borehole data: plausible equiprobable solutions of the complex geological structure of the CPQA were simulated. This study highlights that the choice of geostatistical simulation method plays a fundamental role in predictive scenarios for groundwater resources managing of CPQA. Indeed, simulated characteristics of the sedimentary heterogeneity constituted the basis of finite difference models for simulating the groundwater flow of CPQA. In heterogeneous systems such as CPQA, SIS may be inadequate for reproducing the macrostructures. Instead, MC adequately reproduced spatial connection of lithofacies, representing a more realistic solution dealing to the proposed geological model of CPQA. MC and SIS models were utilized to both assess the uncertainty of the generated hydraulic conductivity fields of CPQA and predictions about its behavior under normal stress conditions induced by urbanization. The calibration of CPQA groundwater flow models based on MC and SIS simulations allowed to achieve a realistic feedback about the quality of the geostatistical reconstructions of the geological heterogeneity field.展开更多
This work is a study of multivariate simulations of pollutants to assess the sampling uncertainty for the risk analysis of a contaminated site. The study started from data collected for a remediation project of a stee...This work is a study of multivariate simulations of pollutants to assess the sampling uncertainty for the risk analysis of a contaminated site. The study started from data collected for a remediation project of a steel- works in northern Italy. The soil samples were taken from boreholes excavated a few years ago and analyzed by a chemical laboratory. The data set comprises concentrations of several pollutants, from which a subset of ten organic and inorganic compounds were selected. The first part of study is a univariate and bivariate sta- tistical analysis of the data. All data were spatially analyzed and transformed to the Gaussian space so as to reduce the effects of extreme high values due to contaminant hot spots and the requirements of Gaussian simulation procedures. The variography analysis quantified spatial correlation and cross-correlations, which led to a hypothesized linear model of coregionalization for all variables. Geostatistical simulation methods were applied to assess the uncertainty. Two types of simulations were performed: correlation correction of univariate sequential Gaussian simulations (SGS), and sequential Gaussian co-simulations (SGCOS). The outputs from the correlation correction simulations and SGCOS were analyzed and grade-tonnage curves were produced to assess basic environmental risk.展开更多
This work presents and analyses a geostatistical methodology for spatial modelling of Soil Lime Requirements (SLR) considering punctual samples of Cation Exchange Capacity (CEC) and Base Saturation (BS) soil propertie...This work presents and analyses a geostatistical methodology for spatial modelling of Soil Lime Requirements (SLR) considering punctual samples of Cation Exchange Capacity (CEC) and Base Saturation (BS) soil properties. Geostatistical Sequential Indicator Simulation is used to draw realizations from the joint uncertainty distributions of the CEC and the BS input variables. The joint distributions are accomplished applying the Principal Component Analyses (PCA) approach. The Monte Carlo method for handling error propagations is used to obtain realization values of the SLR model which are considered to compute and store statistics from the output uncertainty model. From these statistics, it is obtained predictions and uncertainty maps that represent the spatial variation of the output variable and the propagated uncertainty respectively. Therefore, the prediction map of the output model is qualified with uncertainty information that should be used on decision making activities related to the planning and management of environmental phenomena. The proposed methodology for SLR modelling presented in this article is illustrated using CEC and BS input sample sets obtained in a farm located in Ponta Grossa city, Paraná state, Brazil.展开更多
Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to...Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to extract the data event contained in the condition data and calculate the number of repetitions of the extracted data events and their repetition probability in the training image to obtain two statistical indicators, unmatched ratio and repeated probability variance of data events. The two statistical indicators are used to characterize the diversity and stability of the sedimentary model in the training image and evaluate the matching of the geological volume spatial structure contained in data of the well block to be modeled. The unmatched ratio reflects the completeness of geological model in training image, which is the first choice index. The repeated probability variance reflects the stationarity index of geological model of each training image, and is an auxiliary index. Then, we can integrate the above two indexes to achieve the optimization of training image. Multiple sets of theoretical model tests show that the training image with small variance and low no-matching ratio is the optimal training image. The method is used to optimize the training image of turbidite channel in Plutonio oilfield in Angola. The geological model established by this method is in good agreement with the seismic attributes and can better reproduce the morphological characteristics of the channels and distribution pattern of sands.展开更多
In this study, the petrophysical parameters such as density, sonic, neutron, and porosity were investigated and presented in the 3D models. The 3D models were built using geostatistical method that is used to estimate...In this study, the petrophysical parameters such as density, sonic, neutron, and porosity were investigated and presented in the 3D models. The 3D models were built using geostatistical method that is used to estimate studied parameters in the entire reservoir. For this purpose, the variogram of each parameter was determined to specify spatial correlation of data. Resulted variograms were non-monotonic. That shows anisotropy of structure. The lithology and porosity parameters are the main causes of this anisotropy. The 3D models also show that petrophysical data has higher variation in north part of reservoir than south part. In addition to, the west limb of reservoir shows higher porosity than east limb. The variation of sonic and neutron data are similar whereas the density data has opposed variation.展开更多
: The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeli...: The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial- temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.展开更多
Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimen...Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.展开更多
CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemi...CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemical reactions is performed to enable better prediction and regulation of the CO_(2)+O_(2) in-situ leaching process of uranium.Geochemical reactions between mining solutions and rock,and the kinetic uranium dissolution controlled by O_(2)(aq)and bicarbonate(HCO_(3)-)are considered in the CO_(2)+O_(2) ISL reactive transport model of a typical sandstone-hosted uranium ore deposit in northern China.The reactive leaching of uranium is most sensitive to the spatial distribution of the mineralogical properties of the uranium deposit.Stochastic geostatistical models are used to represent the uncertainty on the spatial distribution of mineral grades.A Monte Carlo analysis was also performed to simulate the uranium production variability over an entire set of geostatistical realizations.The ISL stochastic simulation performed with the selected geostatistical realizations approximates the uranium production variability well.The simulation results of the ISL reactive transport model show that the extent of the uranium plume is highly dependent on mineralogical heterogeneity.The uncertainty analysis suggests the effect of uranium grade heterogeneity was found to be important to improve the accurate capture of the uncertainty.This study provides guidance for the accurate simulation and dynamic regulation of the CO_(2)+O_(2) leaching process of uranium at the scale of large mining areas.展开更多
This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the la...This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the latter derived from the former. It is confirmed that significant differences exist between uncertainty descriptors, and propagation of uncertainty to end products is immensely affected by the specification of source uncertainty.展开更多
This paper presents a three-dimensional geological reservoir model created using stochastic simulation. The oil field presented is an East African oil field formed by a structural trap. Data analysis and transformatio...This paper presents a three-dimensional geological reservoir model created using stochastic simulation. The oil field presented is an East African oil field formed by a structural trap. Data analysis and transformations were conducted on the properties before simulation. The variogram was used to measure the spatial correlation of cell-based facies modeling, and porosity and permeability modeling. Two main lithologies were modelled using sequential indicator simulation, sand and shale. Sand had a percentage of 26.8% and shale of 73.2%. There was a clear property distribution trend of sand and shale from the southwest to the northeastern part of a reservoir. The distribution trend of the facies resembled the proposed depositional model of the reservoir. Simulations show that average porosity and permeability of the reservoir are about 20% and 1004 mD, respectively. Average water saturation was 64%. STOIIP volume of 689.42 MMbbls was calculated. The results of simulation showed that the south eastern part of the reservoir holds higher volumes of oil. In conclusion, the model gave a better geological understanding of the geology of the area and can be used for decision making about the future development of the reservoir, prediction performance and uncertainty analysis.展开更多
Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that...Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image(TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter(EnKF) and ensemble smoother(ES) because they describe the true facies connectivity with bimodal distribution and predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.展开更多
Based on the algebraic equation of motion(AEOM)approach,we have studied the single-impurity Anderson model by analytically solving the AEOM of the f-electron one-particle Green function in the Kondo limit.The related ...Based on the algebraic equation of motion(AEOM)approach,we have studied the single-impurity Anderson model by analytically solving the AEOM of the f-electron one-particle Green function in the Kondo limit.The related spectral function satisfies the sum rule and shows that there is a well-known three-peak structure at zero temperature.In the low energy limit,we obtain the analytical formula of the Kondo temperature that is the same as the exact solution in form except for a prefactor.We also show that the shape of the Kondo resonance is the Lorentzian form and the corresponding weight is proportional to the spin-flip correlation function.展开更多
Traffic volume information has long played an important role in many transportation related works,such as traffic operations,roadway design,air quality control,and policy making.However,monitoring traffic volumes over...Traffic volume information has long played an important role in many transportation related works,such as traffic operations,roadway design,air quality control,and policy making.However,monitoring traffic volumes over a large spatial area is not an easy task due to the significant amount of time and manpower required to collect such large-scale datasets.In this study,a hybrid geostatistical approach,named Network Regression Kriging,has been developed to estimate urban traffic volumes by incorporating auxiliary variables such as road type,speed limit,and network accessibility.Since standard kriging is based on Euclidean distances,this study implements road network distances to improve traffic volumes estimations.A case study using 10-year of traffic volume data collected within the city of Edmonton was conducted to demonstrate the robustness of the model developed herein.Results suggest that the proposed hybrid model significantly outperforms the standard kriging method in terms of accuracy by 4.0%overall,especially for a large-scale network.It was also found that the necessary stationarity assumption for kriging did not hold true for a large network whereby separate estimations for each road type performed significantly better than a general estimation for the overall network by 4.12%.展开更多
文摘Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.
基金supported by the Key Research Project of China Geological Survey(Grant No.DD20230564)the Research Project of Natural Resources Department of Gansu Province(Grant No.202219)。
文摘Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.
文摘In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.
文摘Sedimentary heterogeneity conditions of Catania Plain quaternary aquifer (CPQA), the wider alluvial multi-aquifer system of Sicily, were rebuilt to simulate and quantify groundwater flow. Transition probabilities based on a Markov Chain (MC) and Sequential Indicator Simulation (SIS) are the structure-imitating simulators utilized for generating stochastic distributions of hydraulic conductivity fields of CPQA, basing on borehole data: plausible equiprobable solutions of the complex geological structure of the CPQA were simulated. This study highlights that the choice of geostatistical simulation method plays a fundamental role in predictive scenarios for groundwater resources managing of CPQA. Indeed, simulated characteristics of the sedimentary heterogeneity constituted the basis of finite difference models for simulating the groundwater flow of CPQA. In heterogeneous systems such as CPQA, SIS may be inadequate for reproducing the macrostructures. Instead, MC adequately reproduced spatial connection of lithofacies, representing a more realistic solution dealing to the proposed geological model of CPQA. MC and SIS models were utilized to both assess the uncertainty of the generated hydraulic conductivity fields of CPQA and predictions about its behavior under normal stress conditions induced by urbanization. The calibration of CPQA groundwater flow models based on MC and SIS simulations allowed to achieve a realistic feedback about the quality of the geostatistical reconstructions of the geological heterogeneity field.
文摘This work is a study of multivariate simulations of pollutants to assess the sampling uncertainty for the risk analysis of a contaminated site. The study started from data collected for a remediation project of a steel- works in northern Italy. The soil samples were taken from boreholes excavated a few years ago and analyzed by a chemical laboratory. The data set comprises concentrations of several pollutants, from which a subset of ten organic and inorganic compounds were selected. The first part of study is a univariate and bivariate sta- tistical analysis of the data. All data were spatially analyzed and transformed to the Gaussian space so as to reduce the effects of extreme high values due to contaminant hot spots and the requirements of Gaussian simulation procedures. The variography analysis quantified spatial correlation and cross-correlations, which led to a hypothesized linear model of coregionalization for all variables. Geostatistical simulation methods were applied to assess the uncertainty. Two types of simulations were performed: correlation correction of univariate sequential Gaussian simulations (SGS), and sequential Gaussian co-simulations (SGCOS). The outputs from the correlation correction simulations and SGCOS were analyzed and grade-tonnage curves were produced to assess basic environmental risk.
文摘This work presents and analyses a geostatistical methodology for spatial modelling of Soil Lime Requirements (SLR) considering punctual samples of Cation Exchange Capacity (CEC) and Base Saturation (BS) soil properties. Geostatistical Sequential Indicator Simulation is used to draw realizations from the joint uncertainty distributions of the CEC and the BS input variables. The joint distributions are accomplished applying the Principal Component Analyses (PCA) approach. The Monte Carlo method for handling error propagations is used to obtain realization values of the SLR model which are considered to compute and store statistics from the output uncertainty model. From these statistics, it is obtained predictions and uncertainty maps that represent the spatial variation of the output variable and the propagated uncertainty respectively. Therefore, the prediction map of the output model is qualified with uncertainty information that should be used on decision making activities related to the planning and management of environmental phenomena. The proposed methodology for SLR modelling presented in this article is illustrated using CEC and BS input sample sets obtained in a farm located in Ponta Grossa city, Paraná state, Brazil.
基金Supported by the China National Science and Technology Major Project(2016ZX05015001-001,2016ZX05033-003-002)
文摘Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to extract the data event contained in the condition data and calculate the number of repetitions of the extracted data events and their repetition probability in the training image to obtain two statistical indicators, unmatched ratio and repeated probability variance of data events. The two statistical indicators are used to characterize the diversity and stability of the sedimentary model in the training image and evaluate the matching of the geological volume spatial structure contained in data of the well block to be modeled. The unmatched ratio reflects the completeness of geological model in training image, which is the first choice index. The repeated probability variance reflects the stationarity index of geological model of each training image, and is an auxiliary index. Then, we can integrate the above two indexes to achieve the optimization of training image. Multiple sets of theoretical model tests show that the training image with small variance and low no-matching ratio is the optimal training image. The method is used to optimize the training image of turbidite channel in Plutonio oilfield in Angola. The geological model established by this method is in good agreement with the seismic attributes and can better reproduce the morphological characteristics of the channels and distribution pattern of sands.
文摘In this study, the petrophysical parameters such as density, sonic, neutron, and porosity were investigated and presented in the 3D models. The 3D models were built using geostatistical method that is used to estimate studied parameters in the entire reservoir. For this purpose, the variogram of each parameter was determined to specify spatial correlation of data. Resulted variograms were non-monotonic. That shows anisotropy of structure. The lithology and porosity parameters are the main causes of this anisotropy. The 3D models also show that petrophysical data has higher variation in north part of reservoir than south part. In addition to, the west limb of reservoir shows higher porosity than east limb. The variation of sonic and neutron data are similar whereas the density data has opposed variation.
文摘: The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial- temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.
文摘Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.
基金jointly supported by the National Key Research and Development Program of China(No.2019YFC1804304)the National Natural Science Foundation of China(Nos.2167212,41772254)。
文摘CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemical reactions is performed to enable better prediction and regulation of the CO_(2)+O_(2) in-situ leaching process of uranium.Geochemical reactions between mining solutions and rock,and the kinetic uranium dissolution controlled by O_(2)(aq)and bicarbonate(HCO_(3)-)are considered in the CO_(2)+O_(2) ISL reactive transport model of a typical sandstone-hosted uranium ore deposit in northern China.The reactive leaching of uranium is most sensitive to the spatial distribution of the mineralogical properties of the uranium deposit.Stochastic geostatistical models are used to represent the uncertainty on the spatial distribution of mineral grades.A Monte Carlo analysis was also performed to simulate the uranium production variability over an entire set of geostatistical realizations.The ISL stochastic simulation performed with the selected geostatistical realizations approximates the uranium production variability well.The simulation results of the ISL reactive transport model show that the extent of the uranium plume is highly dependent on mineralogical heterogeneity.The uncertainty analysis suggests the effect of uranium grade heterogeneity was found to be important to improve the accurate capture of the uncertainty.This study provides guidance for the accurate simulation and dynamic regulation of the CO_(2)+O_(2) leaching process of uranium at the scale of large mining areas.
文摘This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the latter derived from the former. It is confirmed that significant differences exist between uncertainty descriptors, and propagation of uncertainty to end products is immensely affected by the specification of source uncertainty.
文摘This paper presents a three-dimensional geological reservoir model created using stochastic simulation. The oil field presented is an East African oil field formed by a structural trap. Data analysis and transformations were conducted on the properties before simulation. The variogram was used to measure the spatial correlation of cell-based facies modeling, and porosity and permeability modeling. Two main lithologies were modelled using sequential indicator simulation, sand and shale. Sand had a percentage of 26.8% and shale of 73.2%. There was a clear property distribution trend of sand and shale from the southwest to the northeastern part of a reservoir. The distribution trend of the facies resembled the proposed depositional model of the reservoir. Simulations show that average porosity and permeability of the reservoir are about 20% and 1004 mD, respectively. Average water saturation was 64%. STOIIP volume of 689.42 MMbbls was calculated. The results of simulation showed that the south eastern part of the reservoir holds higher volumes of oil. In conclusion, the model gave a better geological understanding of the geology of the area and can be used for decision making about the future development of the reservoir, prediction performance and uncertainty analysis.
基金supported by Korea Institute of Geoscience and Mineral Resources(Project No.GP2017-024)Ministry of Trade and Industry [Project No.NP2017-021(20172510102090)]funded by National Research Foundation of Korea(NRF)Grants(Nos.NRF-2017R1C1B5017767,NRF-2017K2A9A1A01092734)
文摘Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image(TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter(EnKF) and ensemble smoother(ES) because they describe the true facies connectivity with bimodal distribution and predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant No.11974420)。
文摘Based on the algebraic equation of motion(AEOM)approach,we have studied the single-impurity Anderson model by analytically solving the AEOM of the f-electron one-particle Green function in the Kondo limit.The related spectral function satisfies the sum rule and shows that there is a well-known three-peak structure at zero temperature.In the low energy limit,we obtain the analytical formula of the Kondo temperature that is the same as the exact solution in form except for a prefactor.We also show that the shape of the Kondo resonance is the Lorentzian form and the corresponding weight is proportional to the spin-flip correlation function.
文摘Traffic volume information has long played an important role in many transportation related works,such as traffic operations,roadway design,air quality control,and policy making.However,monitoring traffic volumes over a large spatial area is not an easy task due to the significant amount of time and manpower required to collect such large-scale datasets.In this study,a hybrid geostatistical approach,named Network Regression Kriging,has been developed to estimate urban traffic volumes by incorporating auxiliary variables such as road type,speed limit,and network accessibility.Since standard kriging is based on Euclidean distances,this study implements road network distances to improve traffic volumes estimations.A case study using 10-year of traffic volume data collected within the city of Edmonton was conducted to demonstrate the robustness of the model developed herein.Results suggest that the proposed hybrid model significantly outperforms the standard kriging method in terms of accuracy by 4.0%overall,especially for a large-scale network.It was also found that the necessary stationarity assumption for kriging did not hold true for a large network whereby separate estimations for each road type performed significantly better than a general estimation for the overall network by 4.12%.