This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are pr...This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are proposed as control devices, a LQG-clipped-optimal control algorithm is employed. An active control strategy, shown in previous researches to perform well at controlling the benchmark bridge when uniform earthquake motion was assumed, is also used in this study to control this benchmark bridge with consideration of multiple-support excitations. The performance of active control system is compared to that of the presented semi-active control strategy. Because the MR fluid damper is a con-trollable energy- dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. The numerical results demonstrated that the performance of the presented control design is nearly the same as that of the active control system; and that the MR dampers can effectively be used to control seismically excited cable-stayed bridges with multiple-support excitations.展开更多
In order to study the infl uence of the ground motion spatial eff ect on the seismic response of large span spatial structures with isolation bearings, a single-layer cylindrical latticed shell scale model with a simi...In order to study the infl uence of the ground motion spatial eff ect on the seismic response of large span spatial structures with isolation bearings, a single-layer cylindrical latticed shell scale model with a similarity ratio of 1/10 was constructed. An earthquake simulation shaking table test on the response under multiple-support excitations was performed with the high-position seismic isolation method using high damping rubber (HDR) bearings. Small-amplitude sinusoidal waves and seismic wave records with various spectral characteristics were applied to the model. The dynamic characteristics of the model and the seismic isolation eff ect on it were analyzed at varying apparent wave velocities, namely infi nitely great, 1000 m/s, 500 m/s and 250 m/s. Besides, numerical simulations were carried out by Matlab software. According to the comparison results, the numerical results agreed well with the experimental data. Moreover, the results showed that the latticed shell roof exhibited a translational motion as a rigid body after the installation of the HDR bearings with a much lower natural frequency, higher damping ratio and only 1/2~1/8 of the acceleration response peak values. Meanwhile, the structural responses and the bearing deformations at the output end of the seismic waves were greatly increased under multiple-support excitations.展开更多
We demonstrate the flexible tunability of excitation transport in Rydberg atoms,under the interplay of controlled dissipation and interaction-induced synthetic flux.Considering a minimum four-site setup,i.e.,a triangu...We demonstrate the flexible tunability of excitation transport in Rydberg atoms,under the interplay of controlled dissipation and interaction-induced synthetic flux.Considering a minimum four-site setup,i.e.,a triangular configuration with an additional output site,we study the transport of a single excitation.展开更多
Quantum excitation is usually regarded as a transient process occurring instantaneously,leaving the underlying physics shrouded in mystery.Recent research shows that Rydberg-state excitation with ultrashort laser puls...Quantum excitation is usually regarded as a transient process occurring instantaneously,leaving the underlying physics shrouded in mystery.Recent research shows that Rydberg-state excitation with ultrashort laser pulses can be investigated and manipulated with state-of-the-art few-cycle pulses.We theoretically find that the efficiency of Rydberg state excitation can be enhanced with a short laser pulse and modulated by varying the laser intensities.We also uncover new facets of the excitation dynamics,including the launching of an electron wave packet through strong-field ionization,the re-entry of the electron into the atomic potential and the crucial step where the electron makes a U-turn,resulting in twin captures into Rydberg orbitals.By tuning the laser intensity,we show that the excitation of the Rydberg state can be coherently controlled on a sub-optical-cycle timescale.Our work paves the way toward ultrafast control and coherent manipulation of Rydberg states,thus benefiting Rydberg-state-based quantum technology.展开更多
Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-Tc superconductors.In iron-based superconductors,spin excitations at low energy range,especially the spin-resona...Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-Tc superconductors.In iron-based superconductors,spin excitations at low energy range,especially the spin-resonance mode at ER~5kBTc,are important for understanding the superconductivity.Here,we use inelastic neutron scattering(INS)to investigate the symmetry and in-plane wave-vector dependence of low-energy spin excitations in uniaxial-strain detwinned Fe Se.The low-energy spin excitations(E<10 meV)appear mainly at Q=(±1,0)in the superconducting state(T9K)and the nematic state(T90 K),confirming the constant C_(2) rotational symmetry and ruling out the C_(4) mode at E≈3 meV reported in a prior INS study.Moreover,our results reveal an isotropic spin resonance in the superconducting state,which is consistent with the s±wave pairing symmetry.At slightly higher energy,low-energy spin excitations become highly anisotropic.The full width at half maximum of spin excitations is elongated along the transverse direction.The Q-space isotropic spin resonance and highly anisotropic low-energy spin excitations could arise from dyz intra-orbital selective Fermi surface nesting between the hole pocket aroundΓpoint and the electron pockets centered at MX point.展开更多
Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix me...Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix method.The excitation cross-sections from the ground state to the electronic states a^(3)Π,a'^(3)Σ^(+)+and A^(1)Πagree with previous experimental and theoretical results.In addition,the cross-sections for the I^(1)Σ^(+)-and D^(1)Δstates of CO,which will cascade to CO a'^(3)Σ^(+)+and A^(1)Πstates,are calculated.Furthermore,in contrast to the typical increase in electronic excitation cross-sections with collision energy,the de-excitation cross-sections show a negative trend with increasing energy.展开更多
Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C,...Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.展开更多
While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to de...While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to deriveχ(t)from p(t)has biases in both amplitude and phase responses.This study has developed a new simple but more accurate method based on the combination of the frequency-and time-domain Liouville's equation(FTLE).The FTLE method has been validated not only with 6-h sampled synthetic excitation series but also with daily and 6-h sampled polar motion measurements as well asχ(t)produced by the interactive webpage tool of the International Earth Rotation and Reference Systems Service(IERS).Numerical comparisons demonstrate thatχ(t)derived from the FTLE method has superior performances in both the time and frequency domains with respect to that obtained from the widely adopted method or the IERS webpage tool,provided that the input p(t)series has a length around or more than 25 years,which presents no practical limitations since the necessary polar motion data are readily available.The FTLE code is provided in the form of Mat Lab function.展开更多
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau...With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.展开更多
Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In thi...Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In this paper,the M-edge spectra of La ions and the M-edge,L-edge,and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects.We analyze spectral shapes,identify peak origins,and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically.It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state,while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions.Furthermore,the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+is 90%and Mn4+is 10%.This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.展开更多
The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the ...The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.展开更多
The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure ...The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.展开更多
In this paper,we introduce the design principle of the oscillating excited spray cooling experimental device.We then designed an oscillating excited spray cooling experimental device.By using the device,the swaying mo...In this paper,we introduce the design principle of the oscillating excited spray cooling experimental device.We then designed an oscillating excited spray cooling experimental device.By using the device,the swaying motion can be realized through the control system,and the motion of the droplet under different vibration frequencies can be observed.By measuring the liquid flow rate and pressure,the changes in liquid flow rate,pressure,and temperature with time under different vibration frequencies were studied.The trajectory of the droplet and the temperature distribution of the droplet under different vibration frequencies could be observed.The device has a simple structure,is easy to control,and can achieve continuous observation of the spray cooling process.展开更多
Typically, the unambiguous determination of the quantum numbers of nuclear states is a challenging task. Recently, it has been proposed to utilize to this aim vortex photons in the MeV energy region and, potentially, ...Typically, the unambiguous determination of the quantum numbers of nuclear states is a challenging task. Recently, it has been proposed to utilize to this aim vortex photons in the MeV energy region and, potentially, this could revolutionize nuclear spectroscopy because of the new and enhanced selectivity of this probe. Moreover, nuclei may become diagnostic tools for vortex photons. Still, some open questions have to be dealt with.Nuclei exhibit intricate excitation spectra. Indeed, not all states within these spectra are equally significant. Some are not sensitive to specific terms in the nuclear Hamiltonian or do not display novel features, so that investigating them is not helpful to enhance our overall understanding of nuclear structure. On the other hand, there are states that manifest themselves as prominent peaks, e.g., in the inelastic scattering spectra. Among the best examples are the so-called Giant Resonances that lie at energies of the order of tens of MeV [1].展开更多
Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governin...Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governing partial differential equation is transformed into a nonlinear system of fourth-order ordinary differential equations by using the generalized integral transform technique(GITT).The effects of the combined excitation of base motion and pulsating internal flow on the nonlinear dynamic behavior of the pipe are investigated using a bifurcation diagram,phase trajectory diagram,power spectrum diagram,time-domain diagram,and Poincare map.The results show that the base excitation amplitude and frequency significantly affect the dynamic behavior of the pipe system.Some new resonance phenomena can be observed,such as the period-1 motion under the base excitation or the pulsating internal flow alone becomes the multi-periodic motion,quasi-periodic motion or even chaotic motion due to the combined excitation action.展开更多
Broad-spectrum absorption and highly effective charge-carrier separation are two essential requirements to improve the photocatalytic performance of semiconductor-based photocatalysts.In this work,a fascinating one-ph...Broad-spectrum absorption and highly effective charge-carrier separation are two essential requirements to improve the photocatalytic performance of semiconductor-based photocatalysts.In this work,a fascinating one-photon system is reported by rationally fabricating 2D in-plane Bi_(2)O_(3)/BiOCl(i-Cl)heterostructures for efficient photocatalytic degradation of RhB and TC.Systematic investigations revealed that the matched band structure generated an internal electric field and a chemical bond connection between the Bi_(2)O_(3)and BiOCl in the Bi_(2)O_(3)/BiOCl composite that could effectively improve the utilization ratio of visible light and the separation effectivity of photo-generated carriers in space.The formed interactions at the 2D in-plane heterojunction interface induced the one-photon excitation pathway which has been confirmed by the experiment and DFT calculations.As a result,the i-Cl samples showed significantly enhanced photocatalytic efficiency towards the degradation of RhB and TC(RhB:0.106 min^(-1);TC:0.048 min^(-1))under visible light.The degradation activities of RhB and TC for i-Cl were 265.08 and 4.08times that of pure BiOCl,as well as 9.27 and 2.14 times that of mechanistically mixed Bi_(2)O_(3)/BiOCl samples,respectively.This work provides a logical strategy to construct other 2D in-plane heterojunctions with a one-photon excitation pathway with enhanced performance.展开更多
In this study,the competitive failure mechanism of bolt loosening and fatigue is elucidated via competitive failure tests on bolts under composite excitation.Based on the competitive failure mechanism,the mode predict...In this study,the competitive failure mechanism of bolt loosening and fatigue is elucidated via competitive failure tests on bolts under composite excitation.Based on the competitive failure mechanism,the mode prediction model and“load ratio-life prediction curve”(ξ-N curve)of the bolt competitive failure are established.Given the poor correlation of theξ-N curve,an evaluation model of the bolt competitive failure life is proposed based on Miner’s linear damage accumulation theory.Based on the force analysis of the thread surface and simulation of the bolt connection under composite excitation,a theoretical equation of the bolt competitive failure life is established to validate the model for evaluating the bolt competitive failure life.The results reveal that the proposed model can accurately predict the competitive failure life of bolts under composite excitation,and thereby,it can provide guidance to engineering applications.展开更多
Mining more discriminative temporal features to enrich temporal context representation is considered the key to fine-grained action recog-nition.Previous action recognition methods utilize a fixed spatiotemporal windo...Mining more discriminative temporal features to enrich temporal context representation is considered the key to fine-grained action recog-nition.Previous action recognition methods utilize a fixed spatiotemporal window to learn local video representation.However,these methods failed to capture complex motion patterns due to their limited receptive field.To solve the above problems,this paper proposes a lightweight Temporal Pyramid Excitation(TPE)module to capture the short,medium,and long-term temporal context.In this method,Temporal Pyramid(TP)module can effectively expand the temporal receptive field of the network by using the multi-temporal kernel decomposition without significantly increasing the computational cost.In addition,the Multi Excitation module can emphasize temporal importance to enhance the temporal feature representation learning.TPE can be integrated into ResNet50,and building a compact video learning framework-TPENet.Extensive validation experiments on several challenging benchmark(Something-Something V1,Something-Something V2,UCF-101,and HMDB51)datasets demonstrate that our method achieves a preferable balance between computation and accuracy.展开更多
In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its ...In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its acceleration response spectrum in any desired time duration is compatible with a time-scaled predefined acceleration response spectrum.For this purpose,simulated stationary acceleration time series is multiplied by the time dependent linear modulation function,then using a simple iterative scheme,it is forced to match a target acceleration response spectrum.It is shown that the generated samples have excellent conformity in low frequency,which is useful for nonlinear endurance time analysis.In the second part of this study,it is shown that this procedure can be extended to generate a set of spatially correlated endurance time excitation functions.This makes it possible to assess the performance of long structures under multi-support seismic excitation using endurance time analysis.展开更多
Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non...Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non-Gaussian.In this paper,the radial basis function(RBF)neural network(RBF-NN)method is adopted as a numerical method to investigate the random vibration of the Bouc-Wen hysteretic system under the Poisson white noise excitations.The solution to the reduced generalized Fokker-PlanckKolmogorov(GFPK)equation is expressed in terms of the RBF-NNs with the Gaussian activation functions,whose weights are determined by minimizing the loss function of the reduced GFPK equation residual and constraint associated with the normalization condition.A steel fiber reinforced ceramsite concrete(SFRCC)column loaded by the Poisson white noise is studied as an example to illustrate the solution process.The effects of several important parameters of both the system and the excitation on the stochastic response are evaluated,and the obtained results are compared with those obtained by the Monte Carlo simulations(MCSs).The numerical results show that the RBF-NN method can accurately predict the stationary response with a considerable high computational efficiency.展开更多
文摘This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are proposed as control devices, a LQG-clipped-optimal control algorithm is employed. An active control strategy, shown in previous researches to perform well at controlling the benchmark bridge when uniform earthquake motion was assumed, is also used in this study to control this benchmark bridge with consideration of multiple-support excitations. The performance of active control system is compared to that of the presented semi-active control strategy. Because the MR fluid damper is a con-trollable energy- dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. The numerical results demonstrated that the performance of the presented control design is nearly the same as that of the active control system; and that the MR dampers can effectively be used to control seismically excited cable-stayed bridges with multiple-support excitations.
基金National Natural Science Foundation of China under Grant No.51278008the National Key Research and Development Plan of China under Grant No.2016YFC0701103
文摘In order to study the infl uence of the ground motion spatial eff ect on the seismic response of large span spatial structures with isolation bearings, a single-layer cylindrical latticed shell scale model with a similarity ratio of 1/10 was constructed. An earthquake simulation shaking table test on the response under multiple-support excitations was performed with the high-position seismic isolation method using high damping rubber (HDR) bearings. Small-amplitude sinusoidal waves and seismic wave records with various spectral characteristics were applied to the model. The dynamic characteristics of the model and the seismic isolation eff ect on it were analyzed at varying apparent wave velocities, namely infi nitely great, 1000 m/s, 500 m/s and 250 m/s. Besides, numerical simulations were carried out by Matlab software. According to the comparison results, the numerical results agreed well with the experimental data. Moreover, the results showed that the latticed shell roof exhibited a translational motion as a rigid body after the installation of the HDR bearings with a much lower natural frequency, higher damping ratio and only 1/2~1/8 of the acceleration response peak values. Meanwhile, the structural responses and the bearing deformations at the output end of the seismic waves were greatly increased under multiple-support excitations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11974331 and 12374479)。
文摘We demonstrate the flexible tunability of excitation transport in Rydberg atoms,under the interplay of controlled dissipation and interaction-induced synthetic flux.Considering a minimum four-site setup,i.e.,a triangular configuration with an additional output site,we study the transport of a single excitation.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0307703)the National Natural Science Foundation of China(Grant Nos.12234020,11874066,12274461,and 11974426)the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1193).
文摘Quantum excitation is usually regarded as a transient process occurring instantaneously,leaving the underlying physics shrouded in mystery.Recent research shows that Rydberg-state excitation with ultrashort laser pulses can be investigated and manipulated with state-of-the-art few-cycle pulses.We theoretically find that the efficiency of Rydberg state excitation can be enhanced with a short laser pulse and modulated by varying the laser intensities.We also uncover new facets of the excitation dynamics,including the launching of an electron wave packet through strong-field ionization,the re-entry of the electron into the atomic potential and the crucial step where the electron makes a U-turn,resulting in twin captures into Rydberg orbitals.By tuning the laser intensity,we show that the excitation of the Rydberg state can be coherently controlled on a sub-optical-cycle timescale.Our work paves the way toward ultrafast control and coherent manipulation of Rydberg states,thus benefiting Rydberg-state-based quantum technology.
基金Beijing Normal University was supported by the Fundamental Research Funds for the Central Universitiesthe National Key Projects for Research and Development of China(No.2021YFA1400400)+1 种基金the National Natural Science Foundation of China(Grant Nos.12174029 and 11922402)the neutron beamtimes from J-PARC(Proposal No.2019A0002)。
文摘Antiferromagnetic spin fluctuation is regarded as the leading driving force for electron pairing in high-Tc superconductors.In iron-based superconductors,spin excitations at low energy range,especially the spin-resonance mode at ER~5kBTc,are important for understanding the superconductivity.Here,we use inelastic neutron scattering(INS)to investigate the symmetry and in-plane wave-vector dependence of low-energy spin excitations in uniaxial-strain detwinned Fe Se.The low-energy spin excitations(E<10 meV)appear mainly at Q=(±1,0)in the superconducting state(T9K)and the nematic state(T90 K),confirming the constant C_(2) rotational symmetry and ruling out the C_(4) mode at E≈3 meV reported in a prior INS study.Moreover,our results reveal an isotropic spin resonance in the superconducting state,which is consistent with the s±wave pairing symmetry.At slightly higher energy,low-energy spin excitations become highly anisotropic.The full width at half maximum of spin excitations is elongated along the transverse direction.The Q-space isotropic spin resonance and highly anisotropic low-energy spin excitations could arise from dyz intra-orbital selective Fermi surface nesting between the hole pocket aroundΓpoint and the electron pockets centered at MX point.
基金Project supported by the National Natural Science Foundation of China (Grant No.11974253)。
文摘Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix method.The excitation cross-sections from the ground state to the electronic states a^(3)Π,a'^(3)Σ^(+)+and A^(1)Πagree with previous experimental and theoretical results.In addition,the cross-sections for the I^(1)Σ^(+)-and D^(1)Δstates of CO,which will cascade to CO a'^(3)Σ^(+)+and A^(1)Πstates,are calculated.Furthermore,in contrast to the typical increase in electronic excitation cross-sections with collision energy,the de-excitation cross-sections show a negative trend with increasing energy.
基金Project supported by the National Key Program for S&T Research and Development(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12174148,11874179,12074144,and 12074146)。
文摘Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.
基金supported by the National Natural Science Foundation of China(grant numbers 41874025 and 41474022)。
文摘While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to deriveχ(t)from p(t)has biases in both amplitude and phase responses.This study has developed a new simple but more accurate method based on the combination of the frequency-and time-domain Liouville's equation(FTLE).The FTLE method has been validated not only with 6-h sampled synthetic excitation series but also with daily and 6-h sampled polar motion measurements as well asχ(t)produced by the interactive webpage tool of the International Earth Rotation and Reference Systems Service(IERS).Numerical comparisons demonstrate thatχ(t)derived from the FTLE method has superior performances in both the time and frequency domains with respect to that obtained from the widely adopted method or the IERS webpage tool,provided that the input p(t)series has a length around or more than 25 years,which presents no practical limitations since the necessary polar motion data are readily available.The FTLE code is provided in the form of Mat Lab function.
基金Fundamental Research Funds for the National Natural Science Foundation of China under Grant No.52078084the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0623)+2 种基金the 111 project of the Ministry of Educationthe Bureau of Foreign Experts of China under Grant No.B18062China Postdoctoral Science Foundation under Grant No.2021M690838。
文摘With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11974253).
文摘Manganese-based perovskite is popular for research on ferromagnetic materials,and its spectroscopic studies are essential for understanding its electronic structure,dielectric,electrical,and magnetic properties.In this paper,the M-edge spectra of La ions and the M-edge,L-edge,and K-edge spectra of Mn ions in LaMnO3 are calculated by considering both the free-ion multiplet calculation and the crystal field effects.We analyze spectral shapes,identify peak origins,and estimate the oxidation states of La and Mn ions in LaMnO3 theoretically.It is concluded that La ions in LaMnO3 predominantly exist in the trivalent state,while Mn ions exist primarily in the trivalent state with a minor presence of tetravalent ions.Furthermore,the calculated spectra are in better conformity with the experimental spectra when the proportion of Mn3+is 90%and Mn4+is 10%.This article enhances our comprehension of the oxidation states of La and Mn within the crystal and also provides a valuable guidance for spectroscopic investigations of other manganates.
基金National Natural Science Foundation of China under Grant No.51879191。
文摘The auto-parametric resonance of a continuous-beam bridge model subjected to a two-point periodic excitation is experimentally and numerically investigated in this study.An auto-parametric resonance experiment of the test model is conducted to observe and measure the auto-parametric resonance of a continuous beam under a two-point excitation on columns.The parametric vibration equation is established for the test model using the finite-element method.The auto-parametric resonance stability of the structure is analyzed by using Newmark's method and the energy-growth exponent method.The effects of the phase difference of the two-point excitation on the stability boundaries of auto-parametric resonance are studied for the test model.Compared with the experiment,the numerical instability predictions of auto-parametric resonance are consistent with the test phenomena,and the numerical stability boundaries of auto-parametric resonance agree with the experimental ones.For a continuous beam bridge,when the ratio of multipoint excitation frequency(applied to the columns)to natural frequency of the continuous girder is approximately equal to 2,the continuous beam may undergo a strong auto-parametric resonance.Combined with the present experiment and analysis,a hypothesis of Volgograd Bridge's serpentine vibration is discussed.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFA 1602500)the National Natural Science Foundation of China (Grant Nos.11934004 and 12241410).
文摘The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.
基金The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJD580001)Jiangsu Maritime Institute Innovation Technology Funding Project(kicx2020-2)。
文摘In this paper,we introduce the design principle of the oscillating excited spray cooling experimental device.We then designed an oscillating excited spray cooling experimental device.By using the device,the swaying motion can be realized through the control system,and the motion of the droplet under different vibration frequencies can be observed.By measuring the liquid flow rate and pressure,the changes in liquid flow rate,pressure,and temperature with time under different vibration frequencies were studied.The trajectory of the droplet and the temperature distribution of the droplet under different vibration frequencies could be observed.The device has a simple structure,is easy to control,and can achieve continuous observation of the spray cooling process.
文摘Typically, the unambiguous determination of the quantum numbers of nuclear states is a challenging task. Recently, it has been proposed to utilize to this aim vortex photons in the MeV energy region and, potentially, this could revolutionize nuclear spectroscopy because of the new and enhanced selectivity of this probe. Moreover, nuclei may become diagnostic tools for vortex photons. Still, some open questions have to be dealt with.Nuclei exhibit intricate excitation spectra. Indeed, not all states within these spectra are equally significant. Some are not sensitive to specific terms in the nuclear Hamiltonian or do not display novel features, so that investigating them is not helpful to enhance our overall understanding of nuclear structure. On the other hand, there are states that manifest themselves as prominent peaks, e.g., in the inelastic scattering spectra. Among the best examples are the so-called Giant Resonances that lie at energies of the order of tens of MeV [1].
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52171288,51890914)the Key Research and Development Program of Shandong Province(Major Innovation Project)(Grant No.2022CXGC020405)+1 种基金the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Oil and Gas Production SystemSubject 4:Research on Subsea Christmas Tree and Wellhead Offshore Testing Technology(Grant No.MC-201901-S01-04)CNPq,CAPES and FAPERJ of Brazil。
文摘Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governing partial differential equation is transformed into a nonlinear system of fourth-order ordinary differential equations by using the generalized integral transform technique(GITT).The effects of the combined excitation of base motion and pulsating internal flow on the nonlinear dynamic behavior of the pipe are investigated using a bifurcation diagram,phase trajectory diagram,power spectrum diagram,time-domain diagram,and Poincare map.The results show that the base excitation amplitude and frequency significantly affect the dynamic behavior of the pipe system.Some new resonance phenomena can be observed,such as the period-1 motion under the base excitation or the pulsating internal flow alone becomes the multi-periodic motion,quasi-periodic motion or even chaotic motion due to the combined excitation action.
基金supported by the National Natural Science Foundation of China(11874314,12174157,and 12074150)the Natural Science Foundation of Jiangsu Province(BK20201424)+1 种基金the Modern Agricultural Equipment and Technology Collaborative Innovation Project(XTCX2025)the Graduate Research and Innovation Projects of Jiangsu Province(KYCX22_3602)。
文摘Broad-spectrum absorption and highly effective charge-carrier separation are two essential requirements to improve the photocatalytic performance of semiconductor-based photocatalysts.In this work,a fascinating one-photon system is reported by rationally fabricating 2D in-plane Bi_(2)O_(3)/BiOCl(i-Cl)heterostructures for efficient photocatalytic degradation of RhB and TC.Systematic investigations revealed that the matched band structure generated an internal electric field and a chemical bond connection between the Bi_(2)O_(3)and BiOCl in the Bi_(2)O_(3)/BiOCl composite that could effectively improve the utilization ratio of visible light and the separation effectivity of photo-generated carriers in space.The formed interactions at the 2D in-plane heterojunction interface induced the one-photon excitation pathway which has been confirmed by the experiment and DFT calculations.As a result,the i-Cl samples showed significantly enhanced photocatalytic efficiency towards the degradation of RhB and TC(RhB:0.106 min^(-1);TC:0.048 min^(-1))under visible light.The degradation activities of RhB and TC for i-Cl were 265.08 and 4.08times that of pure BiOCl,as well as 9.27 and 2.14 times that of mechanistically mixed Bi_(2)O_(3)/BiOCl samples,respectively.This work provides a logical strategy to construct other 2D in-plane heterojunctions with a one-photon excitation pathway with enhanced performance.
基金Supported by National Natural Science Foundation of China(Grant No.52175123)the Independent Subject of State Key Laboratory of Traction Power(Grant No.2022TPL_T03).
文摘In this study,the competitive failure mechanism of bolt loosening and fatigue is elucidated via competitive failure tests on bolts under composite excitation.Based on the competitive failure mechanism,the mode prediction model and“load ratio-life prediction curve”(ξ-N curve)of the bolt competitive failure are established.Given the poor correlation of theξ-N curve,an evaluation model of the bolt competitive failure life is proposed based on Miner’s linear damage accumulation theory.Based on the force analysis of the thread surface and simulation of the bolt connection under composite excitation,a theoretical equation of the bolt competitive failure life is established to validate the model for evaluating the bolt competitive failure life.The results reveal that the proposed model can accurately predict the competitive failure life of bolts under composite excitation,and thereby,it can provide guidance to engineering applications.
基金supported by the research team of Xi’an Traffic Engineering Institute and the Young and middle-aged fund project of Xi’an Traffic Engineering Institute (2022KY-02).
文摘Mining more discriminative temporal features to enrich temporal context representation is considered the key to fine-grained action recog-nition.Previous action recognition methods utilize a fixed spatiotemporal window to learn local video representation.However,these methods failed to capture complex motion patterns due to their limited receptive field.To solve the above problems,this paper proposes a lightweight Temporal Pyramid Excitation(TPE)module to capture the short,medium,and long-term temporal context.In this method,Temporal Pyramid(TP)module can effectively expand the temporal receptive field of the network by using the multi-temporal kernel decomposition without significantly increasing the computational cost.In addition,the Multi Excitation module can emphasize temporal importance to enhance the temporal feature representation learning.TPE can be integrated into ResNet50,and building a compact video learning framework-TPENet.Extensive validation experiments on several challenging benchmark(Something-Something V1,Something-Something V2,UCF-101,and HMDB51)datasets demonstrate that our method achieves a preferable balance between computation and accuracy.
文摘In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its acceleration response spectrum in any desired time duration is compatible with a time-scaled predefined acceleration response spectrum.For this purpose,simulated stationary acceleration time series is multiplied by the time dependent linear modulation function,then using a simple iterative scheme,it is forced to match a target acceleration response spectrum.It is shown that the generated samples have excellent conformity in low frequency,which is useful for nonlinear endurance time analysis.In the second part of this study,it is shown that this procedure can be extended to generate a set of spatially correlated endurance time excitation functions.This makes it possible to assess the performance of long structures under multi-support seismic excitation using endurance time analysis.
基金the National Natural Science Foundation of China(No.12072118)the Natural Science Funds for Distinguished Young Scholar of Fujian Province of China(No.2021J06024)the Project for Youth Innovation Fund of Xiamen of China(No.3502Z20206005)。
文摘Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non-Gaussian.In this paper,the radial basis function(RBF)neural network(RBF-NN)method is adopted as a numerical method to investigate the random vibration of the Bouc-Wen hysteretic system under the Poisson white noise excitations.The solution to the reduced generalized Fokker-PlanckKolmogorov(GFPK)equation is expressed in terms of the RBF-NNs with the Gaussian activation functions,whose weights are determined by minimizing the loss function of the reduced GFPK equation residual and constraint associated with the normalization condition.A steel fiber reinforced ceramsite concrete(SFRCC)column loaded by the Poisson white noise is studied as an example to illustrate the solution process.The effects of several important parameters of both the system and the excitation on the stochastic response are evaluated,and the obtained results are compared with those obtained by the Monte Carlo simulations(MCSs).The numerical results show that the RBF-NN method can accurately predict the stationary response with a considerable high computational efficiency.