Driven by curiosity about possible flight options for the Chang'e-2 spacecraft after it remains at the Sun-Earth L2 point, effective approaches were developed for designing preliminary fuel-optimal near-Earth asteroi...Driven by curiosity about possible flight options for the Chang'e-2 spacecraft after it remains at the Sun-Earth L2 point, effective approaches were developed for designing preliminary fuel-optimal near-Earth asteroid flyby trajectories. The approaches include the use of modified unstable manifolds, grid search of the manifolds' parameters, and a two-impulse maneuver for orbital phase matching and z-axis bias change, and are demonstrated to be effective in asteroid target screening and trajectory optimization. Asteroid flybys are expected to be within a distance of 2 × 10^7 km from the Earth owing to the constrained Earth-spacecraft communication range. In this case, the spacecraft's orbital motion is significantly affected by the gravities of both the Sun and the Earth, and therefore, the concept of the "he- liocentric oscillating-Kepler orbit" is proposed, because the classical orbital elements of the flyby trajectories referenced in the heliocentric inertial frame oscillate significantly with respect to time. The analysis and results presented in this study show that, among the asteroids whose orbits are the most accurately predicted, "Toutatis", "2005 NZ6", or "2010 CL19" might be encountered by Chang'e-2 in late 2012 or 2013 with total impulses less than 100 rn/s.展开更多
After the Chang’e-2 spacecraft conducted a successful asteroid flyby,where is it flying to in interplanetary space?This question is answered via an introduction to the Chang’e-2’s flight trajectory after asteroid f...After the Chang’e-2 spacecraft conducted a successful asteroid flyby,where is it flying to in interplanetary space?This question is answered via an introduction to the Chang’e-2’s flight trajectory after asteroid flyby that is termed Earth co-orbital motion.Based on preliminary analysis using the dynamical systems theory,Poincare′sections concept,and routine optimization techniques,it is now predicted that,from the point of view of orbital mechanics,Chang’e-2 is capable of returning to the vicinity of the Earth in no more than 20 a and might be recaptured by the Earth if appropriate orbital maneuvers are going to be exerted,either by itself or by another spacecraft that captures Chang’e-2.展开更多
Technique of target selection and profiles of transfer trajectory for Chinese asteroid exploring mission are studied systemically.A complete set of approaches to selecting mission targets and designing the transfer tr...Technique of target selection and profiles of transfer trajectory for Chinese asteroid exploring mission are studied systemically.A complete set of approaches to selecting mission targets and designing the transfer trajectory is proposed.First,when selecting a target for mission,some factors regarded as the scientific motivations are discussed.Then,when analyzing the accessibility of targets,instead of the classical strategy,the multiple gravity-assist strategy is provided.The suitable and possible targets,taking into account scientific value and technically feasible,are obtained via selection and estimation.When designing the transfer trajectory for exploring asteroid mission,an approach to selecting gravity-assist celestial body is proposed.Finally,according to the mission constraints,the trajectory profile with 2-years △V-EGA for exploring asteroid is presented.Through analyzing the trajectory profile,unexpected result that the trajectory would pass by two main-belts asteroids is found.So,the original proposal is extended to the multiple flybys mission.It adds the scientific return for asteroid mission.展开更多
基金supported by the State Key Laboratory of Astronautic Dynamics(2011ADL-DW0202)
文摘Driven by curiosity about possible flight options for the Chang'e-2 spacecraft after it remains at the Sun-Earth L2 point, effective approaches were developed for designing preliminary fuel-optimal near-Earth asteroid flyby trajectories. The approaches include the use of modified unstable manifolds, grid search of the manifolds' parameters, and a two-impulse maneuver for orbital phase matching and z-axis bias change, and are demonstrated to be effective in asteroid target screening and trajectory optimization. Asteroid flybys are expected to be within a distance of 2 × 10^7 km from the Earth owing to the constrained Earth-spacecraft communication range. In this case, the spacecraft's orbital motion is significantly affected by the gravities of both the Sun and the Earth, and therefore, the concept of the "he- liocentric oscillating-Kepler orbit" is proposed, because the classical orbital elements of the flyby trajectories referenced in the heliocentric inertial frame oscillate significantly with respect to time. The analysis and results presented in this study show that, among the asteroids whose orbits are the most accurately predicted, "Toutatis", "2005 NZ6", or "2010 CL19" might be encountered by Chang'e-2 in late 2012 or 2013 with total impulses less than 100 rn/s.
文摘After the Chang’e-2 spacecraft conducted a successful asteroid flyby,where is it flying to in interplanetary space?This question is answered via an introduction to the Chang’e-2’s flight trajectory after asteroid flyby that is termed Earth co-orbital motion.Based on preliminary analysis using the dynamical systems theory,Poincare′sections concept,and routine optimization techniques,it is now predicted that,from the point of view of orbital mechanics,Chang’e-2 is capable of returning to the vicinity of the Earth in no more than 20 a and might be recaptured by the Earth if appropriate orbital maneuvers are going to be exerted,either by itself or by another spacecraft that captures Chang’e-2.
基金supported by the National Natural Science Foundation of China (Grant Nos 10832004 and 10672044)
文摘Technique of target selection and profiles of transfer trajectory for Chinese asteroid exploring mission are studied systemically.A complete set of approaches to selecting mission targets and designing the transfer trajectory is proposed.First,when selecting a target for mission,some factors regarded as the scientific motivations are discussed.Then,when analyzing the accessibility of targets,instead of the classical strategy,the multiple gravity-assist strategy is provided.The suitable and possible targets,taking into account scientific value and technically feasible,are obtained via selection and estimation.When designing the transfer trajectory for exploring asteroid mission,an approach to selecting gravity-assist celestial body is proposed.Finally,according to the mission constraints,the trajectory profile with 2-years △V-EGA for exploring asteroid is presented.Through analyzing the trajectory profile,unexpected result that the trajectory would pass by two main-belts asteroids is found.So,the original proposal is extended to the multiple flybys mission.It adds the scientific return for asteroid mission.