Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low inse...Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system.展开更多
Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed ga...Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.展开更多
The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA)....The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.展开更多
The in-band full-duplex(IBFD)wireless system is a promising candidate for 6G and beyond,as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and re...The in-band full-duplex(IBFD)wireless system is a promising candidate for 6G and beyond,as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and reception of signals.Enabling IBFD systems requires a substantial mitigation of a transmitter(Tx)’s strong self-interference(SI)signal into the receiver(Rx)channel.However,current state-ofthe-art approaches to tackle this challenge are inefficient in terms of performance,cost,and complexity,hindering the commercialization of IBFD techniques.In this work,we devise and demonstrate an innovative approach to realize IBFD systems that exhibit superior performance with a low-cost and lesscomplex architecture in an all-passive module.Our scheme is based on meticulously combining polarization-division multiplexing(PDM)with ferromagnetic nonreciprocity to achieve ultra-high isolation between Tx and Rx channels.Such an unprecedented conception has become feasible thanks to a concurrent dual-mode circulator—a new component introduced for the first time—as a key feature of our module,and a dual-mode waveguide that transforms two orthogonally polarized waves into two orthogonal waveguide modes.In addition,we propose a unique passive tunable secondary SI cancellation(SIC)mechanism,which is embedded within the proposed module and boosts the isolation over a relatively broad bandwidth.We report,solely in the analog domain,experimental isolation levels of 50,70,and 80 dB over 340,101,and 33 MHz bandwidth at the center frequency of interest,respectively,with excellent tuning capability.Furthermore,the module is tested in two real IBFD scenarios to assess its performance in connection with Tx-to-Rx leakage and modulation error in the presence of a Tx’s strong interference signal.展开更多
Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of ...Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of this pathogen exhaustive monitoring of this pathogen is considered of critical importance to public health organizations. The reliable identification method able to distinguish genetic close Pseudomonas species is needed, because these organisms are difficult to differentiate by phenotypic or biochemical methods. The purpose of the present study was to design species-specific primers in order to identify and detect four Pseudomonas species which are frequently detected from the human oral cavities, and to investigate the distribution of these organisms in the living environment using a multiplex PCR. Methods: Polymerase chain reaction (PCR) primers were designed based on partial sequences of the rpoD gene of four Pseudomonas species. Swab samples were collected from fifty washstands, and the distribution of Pseudomonas species was investigated using a conventional PCR at genus level and a multiplex PCR at species level. Results: Multiplex PCR method developed in this study was able to distinguish four Pseudomonas species clearly. The genus Pseudomonas was detected from all samples (100%), whereas P. putida, P, aeruginosa, P. stutzeri and P. fluorescens were detected at 44%, 8%, 4% and 2% in fifty swab samples, respectively. Conclusion: Our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and works without requiring DNA extraction. It was indicated that washstands were the uninhabitable environment for P. putida, P, aeruginosa, P. stutzeri and P. fluorescens.展开更多
The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of t...The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering.展开更多
BACKGROUND Influenza A and B virus detection is pivotal in epidemiological surveillance and disease management.Rapid and accurate diagnostic techniques are crucial for timely clinical intervention and outbreak prevent...BACKGROUND Influenza A and B virus detection is pivotal in epidemiological surveillance and disease management.Rapid and accurate diagnostic techniques are crucial for timely clinical intervention and outbreak prevention.Quantum dot-encoded microspheres have been widely used in immunodetection.The integration of quantum dot-encoded microspheres with flow cytometry is a well-established technique that enables rapid analysis.Thus,establishing a multiplex detection method for influenza A and B virus antigens based on flow cytometry quantum dot microspheres will help in disease diagnosis.AIM To establish a codetection method of influenza A and B virus antigens based on flow cytometry quantum dot-encoded microsphere technology,which forms the foundation for the assays of multiple respiratory virus biomarkers.METHODS Different quantum dot-encoded microspheres were used to couple the monoclonal antibodies against influenza A and B.The known influenza A and B antigens were detected both separately and simultaneously on a flow cytometer,and the detection conditions were optimized to establish the influenza A and B antigen codetection method,which was utilized for their detection in clinical samples.The results were compared with the fluorescence quantitative polymerase chain reaction(PCR)method to validate the clinical performance of this method.RESULTS The limits of detection of this method were 26.1 and 10.7 pg/mL for influenza A and B antigens,respectively,which both ranged from 15.6 to 250000 pg/mL.In the clinical sample evaluation,the proposed method well correlated with the fluorescent quantitative PCR method,with positive,negative,and overall compliance rates of 57.4%,100%,and 71.6%,respectively.CONCLUSION A multiplex assay for quantitative detection of influenza A and B virus antigens has been established,which is characterized by high sensitivity,good specificity,and a wide detection range and is promising for clinical applications.展开更多
Background and Objective: HIV, hepatitis B virus (HBV) and hepatitis C virus (HCV) are very widespread in the world, however, less than 20% of the people affected are diagnosed and treated. This study aimed to determi...Background and Objective: HIV, hepatitis B virus (HBV) and hepatitis C virus (HCV) are very widespread in the world, however, less than 20% of the people affected are diagnosed and treated. This study aimed to determine the prevalence of HIV, HCV and HBV co-infections in pregnant women at Bangui Community University Hospital and the cost of screening. Methods: A cross-sectional study involving consenting pregnant women who came for antenatal care was performed. HIV, HCV antibodies and HBV antigens were detected using Exacto Triplex<sup>?</sup> HIV/HCV/HBsAg rapid test, cross-validated by ELISA tests. Sociodemographic and professional data, the modes of transmission and prevention of HIV and both hepatitis viruses were collected in a standard sheet and analyzed using the Epi-Info software version 7. Results: Pregnant women aged 15 to 24 were the most affected (45.3%);high school girls (46.0%), and pregnant women living in cohabitation (65.3%) were the most represented. Twenty-five (16.7%) worked in the formal sector, 12.7% were unemployed housewives and the remainder in the informal sector. The prevalence of HIV, HBV, and HCV viruses was 11.8%, 21.9% and 22.2%, respectively. The prevalence of co-infections was 8.6% for HIV-HBV, 10.2% for HIV-HCV, 14.7% for HBV-HCV and 6.5% for HIV-HBV-HCV. All positive results and 10% of negative results by the rapid test were confirmed by ELISA tests. The serology of the three viruses costs 39,000 FCFA (60 Euros) by ELISA compared to 10,000 FCFA (15.00 Euros) with Exacto Triplex<sup>?</sup> HIV/HCV/AgHBs (BioSynex, Strasbourg, France). Conclusion: The low level of education and awareness of hepatitis are barriers to development and indicate the importance of improving the literacy rate of women in the Central African Republic (CAR). Likewise, the high prevalence of the three viruses shows the need for the urgent establishment of a national program to combat viral hepatitis in the CAR.展开更多
Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in bio...Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.展开更多
BACKGROUND Hepatitis C virus(HCV),hepatitis B virus(HBV),and human immunodeficiency virus 1(HIV-1)are the most epidemic blood-borne viruses,posing threats to human health and causing economic losses to nations for com...BACKGROUND Hepatitis C virus(HCV),hepatitis B virus(HBV),and human immunodeficiency virus 1(HIV-1)are the most epidemic blood-borne viruses,posing threats to human health and causing economic losses to nations for combating the infection transmission.The diagnostic methodologies that depend on the detection of viral nucleic acids are much more expensive,but they are more accurate than sero-logical testing.AIM To develop a rapid,cost-effective,and accurate diagnostic multiplex polymerase chain reaction(PCR)assay for simultaneous detection of HCV,HBV,and HIV-1.METHODS The design of the proposed PCR assay targets the amplification of a short conserved region featured with a distinguishable melting profile and electro-phoretic molecular weight inside each viral genome.Therefore,this diagnostic method will be appropriate for application in both conventional(combined with electrophoresis)and real-time PCR facilities.Confirmatory in silico investigations were conducted to prove the capability of the approached PCR assay to detect variants of each virus.Then,Egyptian isolates of each virus were subjected to the wet lab examination using the given diagnostic assay.RESULTS The in silico investigations confirmed that the PCR primers can match many viral variants in a multiplex PCR assay.The wet lab experiment proved the efficiency of the assay in distinguishing each viral type through high-resolution melting analysis.Compared to related published assays,the proposed assay in the current study is more sensitive and competitive with many expensive PCR assays.CONCLUSION This study provides a simple,cost-effective,and sensitive diagnostic PCR assay facilitating the detection of the most epidemic blood-borne viruses;this makes the proposed assay promising to be substitutive for the mistakable and cheap serological-based assays.展开更多
A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency div...A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency divided 625MHz clock has a phase noise of -106.26dBc/Hz at 100kHz offset in response to a 2.5Gb/s PRBS input data (2^31-1). The 2.5Gb/s PRBS data are demultiplexed to four 625Mb/s data. The 0.97mm× 0.97mm IC consumes 550mW under a single 3.3V power supply (not including output buffers).展开更多
A 1 :2 demultiplexer is designed and realized in standard 0. 18μm CMOS technology. A novel high-speed and low-voltage latch is used to realize the core circuit cell. Compared to the traditional source-coupled FET lo...A 1 :2 demultiplexer is designed and realized in standard 0. 18μm CMOS technology. A novel high-speed and low-voltage latch is used to realize the core circuit cell. Compared to the traditional source-coupled FET logic structure latch, its power supply voltage is lower and the speed is faster. In addition, the negative feedback is used in the buffer circuit to widen its bandwidth. Measurement results show that the chip can work at the data rate of 20Gb/ s. The supply voltage is 1.8V and the current,including the buffer circuit, is 72mA.展开更多
A 10 Gbit/s 1:4 demultiplexer(DEMUX) fabricated in 0. 18 μm CMOS (complementary metal-oxidesemiconductor transistor) technology for optical-fiber-link is presented. The system is constructed in tree-type structu...A 10 Gbit/s 1:4 demultiplexer(DEMUX) fabricated in 0. 18 μm CMOS (complementary metal-oxidesemiconductor transistor) technology for optical-fiber-link is presented. The system is constructed in tree-type structure and it includes a high-speed 1 : 2 DEMUX, two low-speed 1 : 2 DEMUXs, a divider, and input and output buffers for data and dock. To improve the circuit performance and reduce the power consumption, a latch structure with a common-gate topology and a single clock phase is employed in the high-speed 1 : 2 DEMUX and the 5 GHz 1 : 2 on-chip frequency divider, while dynamic CMOS logic is adopted in the low-speed l : 2 DEMUXs. Measured results at 10 Gbit/s by 23^31 -1 pseudo random bit sequences (PRBS) via on-wafer testing indicate that it can work well with a power dissipation of less than 100 mW at 1.8 V supply voltage. The die area of the DEMUX is 0. 65 mm × 0. 75 mm.展开更多
A low power 12Gb/s single-stage 1 : 4 demultiplexer (DEMUX) applied in SONET OC-192 is realized in TSMC's mix-signal 0. 25μm CMOS. All of the circuits are in source coupled FET logic (SCFL) to achieve as high a...A low power 12Gb/s single-stage 1 : 4 demultiplexer (DEMUX) applied in SONET OC-192 is realized in TSMC's mix-signal 0. 25μm CMOS. All of the circuits are in source coupled FET logic (SCFL) to achieve as high a speed as possible and suppress common mode distortions. This DEMUX is featured for achieving singlestage demultiplexing by using a quarter-rate IQ clock. This method not only reduces the components of the DEMUX but also lowers its power dissipation. The fabricated DEMUX operates error free at 12Gb/s by 231 - 1 pseudorandom bit sequences in on-wafer testing. The chip size is 0. 9mm × 0.9mm and the power dissipation is only 210mW with a single 2.5V supply.展开更多
A 1 : 2 demultiplexer(DEMUX) that is fabricated using 0. 18 μm CMOS (complementary metaloxide-semiconductor transistor) technology is presented. The DEMUX consists of a master-slave-slave, masterslave D flip-flo...A 1 : 2 demultiplexer(DEMUX) that is fabricated using 0. 18 μm CMOS (complementary metaloxide-semiconductor transistor) technology is presented. The DEMUX consists of a master-slave-slave, masterslave D flip-flops and output buffers. The D flip-flop employs a dynamic-loading structure and common-gate topology with single clock phase for the bias transistors. The dynamic-loading structure can make the circuit work faster because it decreases the charge/discharge time of the output node, and it consumes lower power because its working current is in a switch mode. In addition, the positive feedback loop, which is made up of a cross-coupled transistor pair in the latch, speeds up the circuit. Measurement results at 20 Gbit/s 2^23 - 1 pseudo random bit sequence (PRBS) via on-wafer testing show that the 1: 2 DEMUX can operate well. The power dissipation is 108 mW with the area of 475μm×578μm.展开更多
A 10 Gbit/s (STM-64, OC-192) 1:4 demultiplexer (DEMUX) with 4-phase clock wasachieved in TSMC's standard 0.25 μm complementary metal-oxide-semiconductor (CMOS) technique. Allof the circuits are in source coupled ...A 10 Gbit/s (STM-64, OC-192) 1:4 demultiplexer (DEMUX) with 4-phase clock wasachieved in TSMC's standard 0.25 μm complementary metal-oxide-semiconductor (CMOS) technique. Allof the circuits are in source coupled FET logic (SCFL) to achieve as high as possible speed andsuppress common mode distortions. This DEMUX is featured by constant-delay buffers to generate a4-phase clock and adjust skews of the four channel outputs. The fabricated DEMUX operates error freeat 10 Gbit/s by 2^(31) -1 pseudorandom bit sequences (PRBS) via on-wafer testing. The measured rootmean square (rms) jitter, rising and failing edge of the eye-diagram are 11, 123 and 137 ps,respectively. The chip size is 0.9 mm x 1.2 mm and the power dissipation is 550 mW with a 3. 3 Vsupply.展开更多
Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analyse...Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analysed by using three-dimensional semi-vectorial finite-difference beam propagation method (3D-SV-FD-BPM). The results show that a MMI section of 330.0 μm in length, which is only 76% length of a straight MMI coupler, is achieved with the contrasts of 42.3 and 39.2dB in quasi-TE mode, and 38.4 and 37.8dB in quasi-TM mode at wavelengths 1.30 and 1.55μm, respectively, and the insertion losses below 0.2dB at both wavelengths and in both polarization states, The alternating direction implicit algorithm with the Crank-Nicholson scheme is applied to the discretization of the 3D-SV-FD-BPM formulation along the longitudinal direction. Moreover, a modified FD scheme is constructed to approximate the resulting equations along the transverse directions, in which the discontinuities of the derivatives of magnetic field components Hy and Hx along the vertical and horizontal interfaces, respectively, are involved.展开更多
Miniaturized spectrometers have been widely researched in recent years,but few studies are conducted with on-chip multimode schemes for mode-division multiplexing(MDM)systems.Here we propose an ultracompact mode-divis...Miniaturized spectrometers have been widely researched in recent years,but few studies are conducted with on-chip multimode schemes for mode-division multiplexing(MDM)systems.Here we propose an ultracompact mode-division demultiplexing spectrometer that includes branched waveguide structures and graphene-based photodetectors,which realizes simultaneously spectral dispersing and light fields detecting.In the bandwidth of 1500-1600 nm,the designed spectrometer achieves the single-mode spectral resolution of 7 nm for each mode of TE_(1)-TE_(4) by Tikhonov regularization optimization.Empowered by deep learning algorithms,the 15-nm resolution of parallel reconstruction for TE_(1)-TE_(4) is achieved by a single-shot measurement.Moreover,by stacking the multimode response in TE_(1)-TE_(4) to the single spectra,the 3-nm spectral resolution is realized.This design reveals an effective solution for on-chip MDM spectroscopy,and may find applications in multimode sensing,interconnecting and processing.展开更多
Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely a...Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely applied in flat panel display industries and inspires the wavefront modulation with the development of LC alignment techniques.However,most LC elements perform only one type of optical manipulation and are difficult to realize the multifunctionality and light integration.Here,flat multifunctional liquid crystal elements(FMLCEs),merely composed of anisotropic LC molecules with space-variant orientations,are presented for multichannel information manipulation by means of polarization,space and wavelength multiplexing.Specifically,benefiting from the unique light response with the change of the incident polarization,observation plane,and working wavelength,a series of FMLCEs are demonstrated to achieve distinct near-and far-field display functions.The proposed strategy takes full advantage of basic optical parameters as the decrypted keys to improve the information capacity and security,and we expect it to find potential applications in information encryption,optical anti-counterfeiting,virtual/augmented reality,etc.展开更多
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金supported in part by the ZTE Industry-University-Institute Cooperation Funds.
文摘Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system.
基金the National Natural Science Foun-dation of China(Grant No.52375546)the National Key Research and Development Program of China(Grant No.2022YFF0705701).
文摘Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.
文摘The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.
基金supported by a Natural Sciences and Engineering Research Council(NSERC)-sponsored Industrial Research Chair program,an NSERC Discovery Grantin part by the Fonds de recherche du Québec Nature et technologies(FRQNT)Doctoral Fellowship of Amir Afshani funded by the Government of Québec Province.
文摘The in-band full-duplex(IBFD)wireless system is a promising candidate for 6G and beyond,as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and reception of signals.Enabling IBFD systems requires a substantial mitigation of a transmitter(Tx)’s strong self-interference(SI)signal into the receiver(Rx)channel.However,current state-ofthe-art approaches to tackle this challenge are inefficient in terms of performance,cost,and complexity,hindering the commercialization of IBFD techniques.In this work,we devise and demonstrate an innovative approach to realize IBFD systems that exhibit superior performance with a low-cost and lesscomplex architecture in an all-passive module.Our scheme is based on meticulously combining polarization-division multiplexing(PDM)with ferromagnetic nonreciprocity to achieve ultra-high isolation between Tx and Rx channels.Such an unprecedented conception has become feasible thanks to a concurrent dual-mode circulator—a new component introduced for the first time—as a key feature of our module,and a dual-mode waveguide that transforms two orthogonally polarized waves into two orthogonal waveguide modes.In addition,we propose a unique passive tunable secondary SI cancellation(SIC)mechanism,which is embedded within the proposed module and boosts the isolation over a relatively broad bandwidth.We report,solely in the analog domain,experimental isolation levels of 50,70,and 80 dB over 340,101,and 33 MHz bandwidth at the center frequency of interest,respectively,with excellent tuning capability.Furthermore,the module is tested in two real IBFD scenarios to assess its performance in connection with Tx-to-Rx leakage and modulation error in the presence of a Tx’s strong interference signal.
文摘Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of this pathogen exhaustive monitoring of this pathogen is considered of critical importance to public health organizations. The reliable identification method able to distinguish genetic close Pseudomonas species is needed, because these organisms are difficult to differentiate by phenotypic or biochemical methods. The purpose of the present study was to design species-specific primers in order to identify and detect four Pseudomonas species which are frequently detected from the human oral cavities, and to investigate the distribution of these organisms in the living environment using a multiplex PCR. Methods: Polymerase chain reaction (PCR) primers were designed based on partial sequences of the rpoD gene of four Pseudomonas species. Swab samples were collected from fifty washstands, and the distribution of Pseudomonas species was investigated using a conventional PCR at genus level and a multiplex PCR at species level. Results: Multiplex PCR method developed in this study was able to distinguish four Pseudomonas species clearly. The genus Pseudomonas was detected from all samples (100%), whereas P. putida, P, aeruginosa, P. stutzeri and P. fluorescens were detected at 44%, 8%, 4% and 2% in fifty swab samples, respectively. Conclusion: Our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and works without requiring DNA extraction. It was indicated that washstands were the uninhabitable environment for P. putida, P, aeruginosa, P. stutzeri and P. fluorescens.
基金supported by the National Natural Science Foundation of China(32001532 and 31860411)the National Key Research and Development Program of China,(2022YFF1000020)+1 种基金Hunan Seed Industry Innovation Project(2021NK1012)the Yunnan Tobacco Company Project(2020530000241009)。
文摘The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering.
基金Shenzhen Guangming District Soft Science Research Project,No.2021R01097。
文摘BACKGROUND Influenza A and B virus detection is pivotal in epidemiological surveillance and disease management.Rapid and accurate diagnostic techniques are crucial for timely clinical intervention and outbreak prevention.Quantum dot-encoded microspheres have been widely used in immunodetection.The integration of quantum dot-encoded microspheres with flow cytometry is a well-established technique that enables rapid analysis.Thus,establishing a multiplex detection method for influenza A and B virus antigens based on flow cytometry quantum dot microspheres will help in disease diagnosis.AIM To establish a codetection method of influenza A and B virus antigens based on flow cytometry quantum dot-encoded microsphere technology,which forms the foundation for the assays of multiple respiratory virus biomarkers.METHODS Different quantum dot-encoded microspheres were used to couple the monoclonal antibodies against influenza A and B.The known influenza A and B antigens were detected both separately and simultaneously on a flow cytometer,and the detection conditions were optimized to establish the influenza A and B antigen codetection method,which was utilized for their detection in clinical samples.The results were compared with the fluorescence quantitative polymerase chain reaction(PCR)method to validate the clinical performance of this method.RESULTS The limits of detection of this method were 26.1 and 10.7 pg/mL for influenza A and B antigens,respectively,which both ranged from 15.6 to 250000 pg/mL.In the clinical sample evaluation,the proposed method well correlated with the fluorescent quantitative PCR method,with positive,negative,and overall compliance rates of 57.4%,100%,and 71.6%,respectively.CONCLUSION A multiplex assay for quantitative detection of influenza A and B virus antigens has been established,which is characterized by high sensitivity,good specificity,and a wide detection range and is promising for clinical applications.
文摘Background and Objective: HIV, hepatitis B virus (HBV) and hepatitis C virus (HCV) are very widespread in the world, however, less than 20% of the people affected are diagnosed and treated. This study aimed to determine the prevalence of HIV, HCV and HBV co-infections in pregnant women at Bangui Community University Hospital and the cost of screening. Methods: A cross-sectional study involving consenting pregnant women who came for antenatal care was performed. HIV, HCV antibodies and HBV antigens were detected using Exacto Triplex<sup>?</sup> HIV/HCV/HBsAg rapid test, cross-validated by ELISA tests. Sociodemographic and professional data, the modes of transmission and prevention of HIV and both hepatitis viruses were collected in a standard sheet and analyzed using the Epi-Info software version 7. Results: Pregnant women aged 15 to 24 were the most affected (45.3%);high school girls (46.0%), and pregnant women living in cohabitation (65.3%) were the most represented. Twenty-five (16.7%) worked in the formal sector, 12.7% were unemployed housewives and the remainder in the informal sector. The prevalence of HIV, HBV, and HCV viruses was 11.8%, 21.9% and 22.2%, respectively. The prevalence of co-infections was 8.6% for HIV-HBV, 10.2% for HIV-HCV, 14.7% for HBV-HCV and 6.5% for HIV-HBV-HCV. All positive results and 10% of negative results by the rapid test were confirmed by ELISA tests. The serology of the three viruses costs 39,000 FCFA (60 Euros) by ELISA compared to 10,000 FCFA (15.00 Euros) with Exacto Triplex<sup>?</sup> HIV/HCV/AgHBs (BioSynex, Strasbourg, France). Conclusion: The low level of education and awareness of hepatitis are barriers to development and indicate the importance of improving the literacy rate of women in the Central African Republic (CAR). Likewise, the high prevalence of the three viruses shows the need for the urgent establishment of a national program to combat viral hepatitis in the CAR.
基金The authors would like to acknowledge financial support from the National Key R&D Program of China(Nos.2021YFF1200700 and 2021YFA0911100)the National Natural Science Foundation of China(Nos.T2225010,32171399,and 32171456)+4 种基金the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(No.22dfx02)Pazhou Lab,Guangzhou(No.PZL2021KF0003)The authors also would like to thank the funding support from the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,and State Key Laboratory of Precision Measuring Technology and Instruments(No.pilab2211)QQOY would like to thank the China Postdoctoral Science Foundation(No.2022M713645)JL would like to thank the National Natural Science Foundation of China(No.62105380)and the China Postdoctoral Science Foundation(No.2021M693686).
文摘Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators.Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects.Current semi-implantable devices are mainly based on single-parameter detection.Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations,but reducing the electrode surface area could potentially limit electrode sensitivity.This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster(MMEC)and a printed circuit board for real-time monitoring of intra-tissue K^(+),Ca^(2+),and Na^(+)concentrations.The electrode surface area was less important for the potentiometric sensing mechanism,suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing.The MMEC device exhibited a broad linear response(K^(+):2–32 mmol/L;Ca^(2+):0.5–4 mmol/L;Na^(+):10–160 mmol/L),high sensitivity(about 20–45 mV/decade),temporal stability(>2weeks),and good selectivity(>80%)for the above ions.In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments.This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.
文摘BACKGROUND Hepatitis C virus(HCV),hepatitis B virus(HBV),and human immunodeficiency virus 1(HIV-1)are the most epidemic blood-borne viruses,posing threats to human health and causing economic losses to nations for combating the infection transmission.The diagnostic methodologies that depend on the detection of viral nucleic acids are much more expensive,but they are more accurate than sero-logical testing.AIM To develop a rapid,cost-effective,and accurate diagnostic multiplex polymerase chain reaction(PCR)assay for simultaneous detection of HCV,HBV,and HIV-1.METHODS The design of the proposed PCR assay targets the amplification of a short conserved region featured with a distinguishable melting profile and electro-phoretic molecular weight inside each viral genome.Therefore,this diagnostic method will be appropriate for application in both conventional(combined with electrophoresis)and real-time PCR facilities.Confirmatory in silico investigations were conducted to prove the capability of the approached PCR assay to detect variants of each virus.Then,Egyptian isolates of each virus were subjected to the wet lab examination using the given diagnostic assay.RESULTS The in silico investigations confirmed that the PCR primers can match many viral variants in a multiplex PCR assay.The wet lab experiment proved the efficiency of the assay in distinguishing each viral type through high-resolution melting analysis.Compared to related published assays,the proposed assay in the current study is more sensitive and competitive with many expensive PCR assays.CONCLUSION This study provides a simple,cost-effective,and sensitive diagnostic PCR assay facilitating the detection of the most epidemic blood-borne viruses;this makes the proposed assay promising to be substitutive for the mistakable and cheap serological-based assays.
文摘A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency divided 625MHz clock has a phase noise of -106.26dBc/Hz at 100kHz offset in response to a 2.5Gb/s PRBS input data (2^31-1). The 2.5Gb/s PRBS data are demultiplexed to four 625Mb/s data. The 0.97mm× 0.97mm IC consumes 550mW under a single 3.3V power supply (not including output buffers).
文摘A 1 :2 demultiplexer is designed and realized in standard 0. 18μm CMOS technology. A novel high-speed and low-voltage latch is used to realize the core circuit cell. Compared to the traditional source-coupled FET logic structure latch, its power supply voltage is lower and the speed is faster. In addition, the negative feedback is used in the buffer circuit to widen its bandwidth. Measurement results show that the chip can work at the data rate of 20Gb/ s. The supply voltage is 1.8V and the current,including the buffer circuit, is 72mA.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No.2001AA312010).
文摘A 10 Gbit/s 1:4 demultiplexer(DEMUX) fabricated in 0. 18 μm CMOS (complementary metal-oxidesemiconductor transistor) technology for optical-fiber-link is presented. The system is constructed in tree-type structure and it includes a high-speed 1 : 2 DEMUX, two low-speed 1 : 2 DEMUXs, a divider, and input and output buffers for data and dock. To improve the circuit performance and reduce the power consumption, a latch structure with a common-gate topology and a single clock phase is employed in the high-speed 1 : 2 DEMUX and the 5 GHz 1 : 2 on-chip frequency divider, while dynamic CMOS logic is adopted in the low-speed l : 2 DEMUXs. Measured results at 10 Gbit/s by 23^31 -1 pseudo random bit sequences (PRBS) via on-wafer testing indicate that it can work well with a power dissipation of less than 100 mW at 1.8 V supply voltage. The die area of the DEMUX is 0. 65 mm × 0. 75 mm.
文摘A low power 12Gb/s single-stage 1 : 4 demultiplexer (DEMUX) applied in SONET OC-192 is realized in TSMC's mix-signal 0. 25μm CMOS. All of the circuits are in source coupled FET logic (SCFL) to achieve as high a speed as possible and suppress common mode distortions. This DEMUX is featured for achieving singlestage demultiplexing by using a quarter-rate IQ clock. This method not only reduces the components of the DEMUX but also lowers its power dissipation. The fabricated DEMUX operates error free at 12Gb/s by 231 - 1 pseudorandom bit sequences in on-wafer testing. The chip size is 0. 9mm × 0.9mm and the power dissipation is only 210mW with a single 2.5V supply.
文摘A 1 : 2 demultiplexer(DEMUX) that is fabricated using 0. 18 μm CMOS (complementary metaloxide-semiconductor transistor) technology is presented. The DEMUX consists of a master-slave-slave, masterslave D flip-flops and output buffers. The D flip-flop employs a dynamic-loading structure and common-gate topology with single clock phase for the bias transistors. The dynamic-loading structure can make the circuit work faster because it decreases the charge/discharge time of the output node, and it consumes lower power because its working current is in a switch mode. In addition, the positive feedback loop, which is made up of a cross-coupled transistor pair in the latch, speeds up the circuit. Measurement results at 20 Gbit/s 2^23 - 1 pseudo random bit sequence (PRBS) via on-wafer testing show that the 1: 2 DEMUX can operate well. The power dissipation is 108 mW with the area of 475μm×578μm.
文摘A 10 Gbit/s (STM-64, OC-192) 1:4 demultiplexer (DEMUX) with 4-phase clock wasachieved in TSMC's standard 0.25 μm complementary metal-oxide-semiconductor (CMOS) technique. Allof the circuits are in source coupled FET logic (SCFL) to achieve as high as possible speed andsuppress common mode distortions. This DEMUX is featured by constant-delay buffers to generate a4-phase clock and adjust skews of the four channel outputs. The fabricated DEMUX operates error freeat 10 Gbit/s by 2^(31) -1 pseudorandom bit sequences (PRBS) via on-wafer testing. The measured rootmean square (rms) jitter, rising and failing edge of the eye-diagram are 11, 123 and 137 ps,respectively. The chip size is 0.9 mm x 1.2 mm and the power dissipation is 550 mW with a 3. 3 Vsupply.
文摘Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analysed by using three-dimensional semi-vectorial finite-difference beam propagation method (3D-SV-FD-BPM). The results show that a MMI section of 330.0 μm in length, which is only 76% length of a straight MMI coupler, is achieved with the contrasts of 42.3 and 39.2dB in quasi-TE mode, and 38.4 and 37.8dB in quasi-TM mode at wavelengths 1.30 and 1.55μm, respectively, and the insertion losses below 0.2dB at both wavelengths and in both polarization states, The alternating direction implicit algorithm with the Crank-Nicholson scheme is applied to the discretization of the 3D-SV-FD-BPM formulation along the longitudinal direction. Moreover, a modified FD scheme is constructed to approximate the resulting equations along the transverse directions, in which the discontinuities of the derivatives of magnetic field components Hy and Hx along the vertical and horizontal interfaces, respectively, are involved.
基金supported by the National Natural Science Foundation of China(Grants No.62005231)Fundamental Research Funds for the Central Universities(20720210045,20720200074)Guangdong Basic and Applied Basic Research Foundation(2021A1515012199).
文摘Miniaturized spectrometers have been widely researched in recent years,but few studies are conducted with on-chip multimode schemes for mode-division multiplexing(MDM)systems.Here we propose an ultracompact mode-division demultiplexing spectrometer that includes branched waveguide structures and graphene-based photodetectors,which realizes simultaneously spectral dispersing and light fields detecting.In the bandwidth of 1500-1600 nm,the designed spectrometer achieves the single-mode spectral resolution of 7 nm for each mode of TE_(1)-TE_(4) by Tikhonov regularization optimization.Empowered by deep learning algorithms,the 15-nm resolution of parallel reconstruction for TE_(1)-TE_(4) is achieved by a single-shot measurement.Moreover,by stacking the multimode response in TE_(1)-TE_(4) to the single spectra,the 3-nm spectral resolution is realized.This design reveals an effective solution for on-chip MDM spectroscopy,and may find applications in multimode sensing,interconnecting and processing.
基金the supports from the National Natural Science Foundation of China (61905073, 61835004, 62134001, 61905031, 62105263, 62275077)Fundamental Research Fund for the Central Universities (531118010189, 310202011qd002)+1 种基金the support from Xi’an Science and Technology Association Youth Talent Support Project (095920211306)the Postdoctoral Innovation Talent Support Program of China (BX20220388)
文摘Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely applied in flat panel display industries and inspires the wavefront modulation with the development of LC alignment techniques.However,most LC elements perform only one type of optical manipulation and are difficult to realize the multifunctionality and light integration.Here,flat multifunctional liquid crystal elements(FMLCEs),merely composed of anisotropic LC molecules with space-variant orientations,are presented for multichannel information manipulation by means of polarization,space and wavelength multiplexing.Specifically,benefiting from the unique light response with the change of the incident polarization,observation plane,and working wavelength,a series of FMLCEs are demonstrated to achieve distinct near-and far-field display functions.The proposed strategy takes full advantage of basic optical parameters as the decrypted keys to improve the information capacity and security,and we expect it to find potential applications in information encryption,optical anti-counterfeiting,virtual/augmented reality,etc.