The Galileo E1 open service (OS) and the global positioning system (GPS) L1C are intending to use the multiplexed binary offset carrier (MBOC) modulation in E1/L1 band, including both pilot and data components. ...The Galileo E1 open service (OS) and the global positioning system (GPS) L1C are intending to use the multiplexed binary offset carrier (MBOC) modulation in E1/L1 band, including both pilot and data components. The impact of data and pilot codes cross-correlation on the distortion of the discriminator function (i.e., the S-curve) is investigated, when only the pilot (or data) components of MBOC signals are tracked. It is shown that the modulation schemes and the receiver configuration (e.g., the correlator spacing) strongly affect the S-curve bias. In this paper, two methods are proposed to optimize the data/pilot code pairs of Galileo E1 OS and GPS L1C. The optimization goal is to obtain the minimum average S-curve bias when tracking only the pilot components a the specific correlator spacing. Figures of merit, such as S-curve bias, correlation loss and code tracking variance have been adopted for analyzing and comparing the un-optimized and optimized code pairs. Simulation results show that the optimized data/pilot code pairs could significantly mitigate the intra-channel codes cross-correlation, and then improve the code tracking performance of MBOC signals.展开更多
基金National Basic Research Program of China(No.2010CB731805)
文摘The Galileo E1 open service (OS) and the global positioning system (GPS) L1C are intending to use the multiplexed binary offset carrier (MBOC) modulation in E1/L1 band, including both pilot and data components. The impact of data and pilot codes cross-correlation on the distortion of the discriminator function (i.e., the S-curve) is investigated, when only the pilot (or data) components of MBOC signals are tracked. It is shown that the modulation schemes and the receiver configuration (e.g., the correlator spacing) strongly affect the S-curve bias. In this paper, two methods are proposed to optimize the data/pilot code pairs of Galileo E1 OS and GPS L1C. The optimization goal is to obtain the minimum average S-curve bias when tracking only the pilot components a the specific correlator spacing. Figures of merit, such as S-curve bias, correlation loss and code tracking variance have been adopted for analyzing and comparing the un-optimized and optimized code pairs. Simulation results show that the optimized data/pilot code pairs could significantly mitigate the intra-channel codes cross-correlation, and then improve the code tracking performance of MBOC signals.