Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping(i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point ...Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping(i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic.展开更多
It is now commonly accepted that the unit disk graph used to model the physical layer in wireless networks does not reflect real radio transmissions, and that a more realistic model should be considered for experiment...It is now commonly accepted that the unit disk graph used to model the physical layer in wireless networks does not reflect real radio transmissions, and that a more realistic model should be considered for experimental simulations. Previous work on realistic scenarios has been focused on unicast, however broadcast requirements are fundamentally different and cannot be derived from the unicast case. Therefore, the broadcast protocols must be adapted in order to still be efficient under realistic assumptions. In this paper, we study the well-known multipoint relay broadcast protocol (MPR), in which each node has to choose a set of 1-hop neighbors to act as relays in order to cover the whole 2-hop neighborhood. We give experimental results showing that the original strategy used to select these multipoint relays does not suit a realistic model. On the basis of these results, we propose new selection strategies solely based on link quality. One of the key aspects of our solutions is that our strategies do not require any additional hardware and may be implemented at the application layer, which is particularly relevant to the context of ad hoc and sensor networks where energy savings are mandatory. We finally provide new experimental results that demonstrate the superiority of our strategies under realistic physical assumptions.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1116200111502056+3 种基金and 51105083)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2012GXNSFAA053207)the Doctor Foundation of Guangxi University of Science and Technology,China(Grant No.12Z09)the Development Project of the Key Laboratory of Guangxi Zhuang Autonomous Region,China(Grant No.1404544)
文摘Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping(i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic.
文摘It is now commonly accepted that the unit disk graph used to model the physical layer in wireless networks does not reflect real radio transmissions, and that a more realistic model should be considered for experimental simulations. Previous work on realistic scenarios has been focused on unicast, however broadcast requirements are fundamentally different and cannot be derived from the unicast case. Therefore, the broadcast protocols must be adapted in order to still be efficient under realistic assumptions. In this paper, we study the well-known multipoint relay broadcast protocol (MPR), in which each node has to choose a set of 1-hop neighbors to act as relays in order to cover the whole 2-hop neighborhood. We give experimental results showing that the original strategy used to select these multipoint relays does not suit a realistic model. On the basis of these results, we propose new selection strategies solely based on link quality. One of the key aspects of our solutions is that our strategies do not require any additional hardware and may be implemented at the application layer, which is particularly relevant to the context of ad hoc and sensor networks where energy savings are mandatory. We finally provide new experimental results that demonstrate the superiority of our strategies under realistic physical assumptions.