We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement ti...We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.展开更多
In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used...In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability.展开更多
The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target refle...The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.展开更多
By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is dev...By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is developed to use regularized SL0(ReSL0)in a reconstruction process to deal with noisy situations.The study shows that the proposed BCS-SL0 takes less execution time than the classical BCS with smoothed projected Landweber(BCS-SPL)algorithm in low measurement ratio,while achieving comparable reconstruction quality,and improving the blocking artifacts especially.The experiment results also verify that the reconstruction performance of BCS-ReSL0 is better than that of the BCSSPL in terms of noise tolerance at low measurement ratio.展开更多
Structural and statistical characteristics of signals can improve the performance of Compressed Sensing (CS). Two kinds of features of Discrete Cosine Transform (DCT) coefficients of voiced speech signals are discusse...Structural and statistical characteristics of signals can improve the performance of Compressed Sensing (CS). Two kinds of features of Discrete Cosine Transform (DCT) coefficients of voiced speech signals are discussed in this paper. The first one is the block sparsity of DCT coefficients of voiced speech formulated from two different aspects which are the distribution of the DCT coefficients of voiced speech and the comparison of reconstruction performance between the mixed program and Basis Pursuit (BP). The block sparsity of DCT coefficients of voiced speech means that some algorithms of block-sparse CS can be used to improve the recovery performance of speech signals. It is proved by the simulation results of the mixed program which is an improved version of the mixed program. The second one is the well known large DCT coefficients of voiced speech focus on low frequency. In line with this feature, a special Gaussian and Partial Identity Joint (GPIJ) matrix is constructed as the sensing matrix for voiced speech signals. Simulation results show that the GPIJ matrix outperforms the classical Gaussian matrix for speech signals of male and female adults.展开更多
Compressed Sensing (CS) is an emerging technology in the field of signal processing, which can recover a sparse signal by taking very few samples and solving a linear programming problem. In this paper, we study the a...Compressed Sensing (CS) is an emerging technology in the field of signal processing, which can recover a sparse signal by taking very few samples and solving a linear programming problem. In this paper, we study the application of Low-Density Parity-Check (LDPC) Codes in CS. Firstly, we find a sufficient condition for a binary matrix to satisfy the Restricted Isometric Property (RIP). Then, by employing the LDPC codes based on Berlekamp-Justesen (B-J) codes, we construct two classes of binary structured matrices and show that these matrices satisfy RIP. Thus, the proposed matrices could be used as sensing matrices for CS. Finally, simulation results show that the performance of the proposed matrices can be comparable with the widely used random sensing matrices.展开更多
We propose a ground moving target detection method for dual-channel Wide Area Surveillance(WAS) radar based on Compressed Sensing(CS).Firstly,the method of moving target detection of the WAS radar is studied.In order ...We propose a ground moving target detection method for dual-channel Wide Area Surveillance(WAS) radar based on Compressed Sensing(CS).Firstly,the method of moving target detection of the WAS radar is studied.In order to reduce the sample data quantity of the radar,the echo data is randomly sampled in the azimuth direction,then,the matched filter is used to perform the range direction focus.We can use the compressive sensing theory to recover the signal in the Doppler domain.At last,the phase difference between the two channels is compensated to suppress the clutter.The result of the simulated data verifies the effectiveness of the proposed method.展开更多
An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Informa...An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.展开更多
An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azi...An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azimuth of the moving ship targets are converted into sparse representation under certain signal basis. The signal reconstruction algorithm based on CS at a distant calculation station, and the Keystone and fractional Fourier transform(FRFT) algorithm are used to compensate range migration and obtain Doppler frequency. When the sea ships satisfy the sparsity, the algorithm can obtain higher resolution in both range and azimuth than the conventional imaging algorithm. Some simulations are performed to verify the reliability and stability.展开更多
A compressed sensing (CS) based channel estimation algorithm is proposed in the fast moving environment. A sparse basis expansion channel model in both time and frequency domain is given.Pilots are placed according ...A compressed sensing (CS) based channel estimation algorithm is proposed in the fast moving environment. A sparse basis expansion channel model in both time and frequency domain is given.Pilots are placed according to a novel random unit pilot matrix (RUPM) to measure the delay- Doppler sparse channel. The sparse channels are recovered by an extension group orthogonal matching pursuit (GOMP) algorithm, enjoying the diversity gain from multi-symbol processing. The relatively nonzero channel coefficients are estimated from a very limited number of pilots at a sampling rate significantly below the Nyquist rate. The simulation results show that the new channel estimator can provide a considerable performance improvement for the fast fading channels. Three significant reductions are achieved in the required number of pilots, memory requirements and computational complexity.展开更多
In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compresse...In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compressed sensing(CS) theory was proposed, which has earned great concern as it can compress an image with a low compression rate, meanwhile the original image can be perfectly reconstructed from only a few compressed data. The CS theory is used to transmit the high resolution astronomical image and build the simulation environment where there is communication between the satellite and the Earth. Number experimental results show that the CS theory can effectively reduce the image transmission and reconstruction time. Even with a very low compression rate, it still can recover a higher quality astronomical image than JPEG and JPEG-2000 compression methods.展开更多
Multipath arrivals in an Ultra-WideBand (UWB) channel have a long time intervals between clusters and rays where the signal takes on zero or negligible values. It is precisely the signal sparsity of the impulse respon...Multipath arrivals in an Ultra-WideBand (UWB) channel have a long time intervals between clusters and rays where the signal takes on zero or negligible values. It is precisely the signal sparsity of the impulse response of the UWB channel that is exploited in this work aiming at UWB channel estimation based on Compressed Sensing (CS). However, these multipath arrivals mainly depend on the channel environments that generate different sparse levels (low-sparse or high-sparse) of the UWB channels. According to this basis, we have analyzed the two most basic recovery algorithms, one based on linear programming Basis Pursuit (BP), another using greedy method Orthogonal Matching Pursuit (OMP), and chosen the best recovery algorithm which are suitable to the sparse level for each type of channel environment. Besides, the results of this work is an open topic for further research aimed at creating a optimal algorithm specially for application of CS based UWB systems.展开更多
Due to unreliable and bandwidth-limited characteristics of communication link in networked control systems,the realtime compensated methods for single-output systems and multioutput systems are proposed in this paper ...Due to unreliable and bandwidth-limited characteristics of communication link in networked control systems,the realtime compensated methods for single-output systems and multioutput systems are proposed in this paper based on the compressed sensing(CS)theory and sliding window technique,by which the estimates of dropping data packets in the feedback channel are obtained and the performance degradation induced by packet drops is reduced.Specifically,in order to reduce the cumulative error caused by the algorithm,the compensated estimates for single-output systems are corrected via the regularization term;considering the process of single-packet transmission,a new sequential CS framework of sensor data streams is introduced to effectively compensate the dropping packet on single-channel of multi-output systems;in presence of the medium access constraints on multi-channel,the communication sequence for scheduling is coupled to the algorithm and the estimates of the multiple sensors for multi-output systems are obtained via the regularization term.Simulation results illustrate that the proposed methods perform well and receive satisfactory performance.展开更多
Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sampling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of interested signal, the randomness ...Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sampling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of interested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Firstly, the CS principle is reviewed. Then the ambiguity function of Multiple-Input Multiple-Output (MIMO) radar is deduced. After that, combined with CS theory, the ambiguity function of MIMO radar is analyzed and simulated in detail. At last, the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed. Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent. But the coherent ambiguity function has higher side lobes, which caused a deterioration in radar target detection performances. The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed. And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection.展开更多
Based on the approximate sparseness of speech in wavelet basis,a compressed sensing theory is applied to compress and reconstruct speech signals.Compared with one-dimensional orthogonal wavelet transform(OWT),two-dime...Based on the approximate sparseness of speech in wavelet basis,a compressed sensing theory is applied to compress and reconstruct speech signals.Compared with one-dimensional orthogonal wavelet transform(OWT),two-dimensional OWT combined with Dmeyer and biorthogonal wavelet is firstly proposed to raise running efficiency in speech frame processing,furthermore,the threshold is set to improve the sparseness.Then an adaptive subgradient projection method(ASPM)is adopted for speech reconstruction in compressed sensing.Meanwhile,mechanism which adaptively adjusts inflation parameter in different iterations has been designed for fast convergence.Theoretical analysis and simulation results conclude that this algorithm has fast convergence,and lower reconstruction error,and also exhibits higher robustness in different noise intensities.展开更多
This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image o...This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image of test object from incomplete detection data. According to binary CT image characteristics, we employ Splitbregman method based on L1/2regularization to solve piecewise constant region reconstruction. To improve the reconstructed image quality from incomplete detection data, we utilize a priori knowledge and Otsu's method as the optimization constraint. In our study, we make numerical simulation to investigate our proposed method,and compare reconstructed results from different reconstruction methods. Finally, the experimental results demonstrate that the proposed method could effectively reduce noise and suppress artifacts, and reconstruct high-quality binary image from incomplete detection data.展开更多
In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the Eur...In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.展开更多
Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compress...Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compressive sensing based face hallucination method is presented,which is comprised of three steps:dictionary learning、sparse coding and solving maximum a posteriori(MAP)formulation.In the first step,the K-SVD dictionary learning algorithm is adopted to obtain a dictionary which can sparsely represent high resolution(HR)face image patches.In the second step,we seek the sparsest representation for each low-resolution(LR)face image paches input using the learned dictionary,super resolution image blocks are obtained from the sparsest coefficients and dictionaries,which then are assembled into super-resolution(SR)image.Finally,MAP formulation is introduced to satisfy the consistency restrictive condition and obtain the higher quality HR images.The experimental results demonstrate that our approach can achieve better super-resolution faces compared with other state-of-the-art method.展开更多
Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirem...Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirement of high sampling rate which leads to complicated signal processing and expensive hardware. In this paper, we present a novel UWB signal sampling method called UWB signal sampling via temporal sparsity (USSTS). Its sampling rate is much lower than Nyquist rate. Moreover, it is implemented in one step and no extra processing unit is needed. Simulation results show that USSTS can not recover the signal precisely, but for the use in localization, the accuracy of TOA estimation is the same as that in traditional methods. Therefore, USSTS gives a novel and effective solution for the use of UWB signals in localization.展开更多
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2020MF119 and ZR2020MA082)the National Natural Science Foundation of China(Grant No.62002208)the National Key Research and Development Program of China(Grant No.2018YFB0504302).
文摘We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements.
文摘In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.
基金Supported by the National Natural Science Foundation of China(61421001,61331021,61501029)
文摘By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is developed to use regularized SL0(ReSL0)in a reconstruction process to deal with noisy situations.The study shows that the proposed BCS-SL0 takes less execution time than the classical BCS with smoothed projected Landweber(BCS-SPL)algorithm in low measurement ratio,while achieving comparable reconstruction quality,and improving the blocking artifacts especially.The experiment results also verify that the reconstruction performance of BCS-ReSL0 is better than that of the BCSSPL in terms of noise tolerance at low measurement ratio.
基金Supported by the National Natural Science Foundation of China (No. 60971129)the National Research Program of China (973 Program) (No. 2011CB302303)the Scientific Innovation Research Program of College Graduate in Jiangsu Province (No. CXLX11_0408)
文摘Structural and statistical characteristics of signals can improve the performance of Compressed Sensing (CS). Two kinds of features of Discrete Cosine Transform (DCT) coefficients of voiced speech signals are discussed in this paper. The first one is the block sparsity of DCT coefficients of voiced speech formulated from two different aspects which are the distribution of the DCT coefficients of voiced speech and the comparison of reconstruction performance between the mixed program and Basis Pursuit (BP). The block sparsity of DCT coefficients of voiced speech means that some algorithms of block-sparse CS can be used to improve the recovery performance of speech signals. It is proved by the simulation results of the mixed program which is an improved version of the mixed program. The second one is the well known large DCT coefficients of voiced speech focus on low frequency. In line with this feature, a special Gaussian and Partial Identity Joint (GPIJ) matrix is constructed as the sensing matrix for voiced speech signals. Simulation results show that the GPIJ matrix outperforms the classical Gaussian matrix for speech signals of male and female adults.
基金Supported by the NSFC project (No. 60972011)the Research Fund for the Doctoral Program of Higher Education of China (No. 20100002110033)the open research fund of National Mobile Communications Research Laboratory of Southeast University (No. 2011D11)
文摘Compressed Sensing (CS) is an emerging technology in the field of signal processing, which can recover a sparse signal by taking very few samples and solving a linear programming problem. In this paper, we study the application of Low-Density Parity-Check (LDPC) Codes in CS. Firstly, we find a sufficient condition for a binary matrix to satisfy the Restricted Isometric Property (RIP). Then, by employing the LDPC codes based on Berlekamp-Justesen (B-J) codes, we construct two classes of binary structured matrices and show that these matrices satisfy RIP. Thus, the proposed matrices could be used as sensing matrices for CS. Finally, simulation results show that the performance of the proposed matrices can be comparable with the widely used random sensing matrices.
文摘We propose a ground moving target detection method for dual-channel Wide Area Surveillance(WAS) radar based on Compressed Sensing(CS).Firstly,the method of moving target detection of the WAS radar is studied.In order to reduce the sample data quantity of the radar,the echo data is randomly sampled in the azimuth direction,then,the matched filter is used to perform the range direction focus.We can use the compressive sensing theory to recover the signal in the Doppler domain.At last,the phase difference between the two channels is compensated to suppress the clutter.The result of the simulated data verifies the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China (No. 61102066, 60972058)the China Postdoctoral Science Foundation (No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No. Y201119890)
文摘An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.
基金supported by the National Natural Science Foundation of China(61271342)
文摘An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azimuth of the moving ship targets are converted into sparse representation under certain signal basis. The signal reconstruction algorithm based on CS at a distant calculation station, and the Keystone and fractional Fourier transform(FRFT) algorithm are used to compensate range migration and obtain Doppler frequency. When the sea ships satisfy the sparsity, the algorithm can obtain higher resolution in both range and azimuth than the conventional imaging algorithm. Some simulations are performed to verify the reliability and stability.
基金Supported by the National Natural Science Foundation of China ( No. 60972056 ), the Innovation Foundation of Shanghai Education Committee ( No. 09ZZ89) and Shanghai Leading Academic Discipline Project and STCSM ( No.S30108, 08DZ2231100 ).
文摘A compressed sensing (CS) based channel estimation algorithm is proposed in the fast moving environment. A sparse basis expansion channel model in both time and frequency domain is given.Pilots are placed according to a novel random unit pilot matrix (RUPM) to measure the delay- Doppler sparse channel. The sparse channels are recovered by an extension group orthogonal matching pursuit (GOMP) algorithm, enjoying the diversity gain from multi-symbol processing. The relatively nonzero channel coefficients are estimated from a very limited number of pilots at a sampling rate significantly below the Nyquist rate. The simulation results show that the new channel estimator can provide a considerable performance improvement for the fast fading channels. Three significant reductions are achieved in the required number of pilots, memory requirements and computational complexity.
文摘In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compressed sensing(CS) theory was proposed, which has earned great concern as it can compress an image with a low compression rate, meanwhile the original image can be perfectly reconstructed from only a few compressed data. The CS theory is used to transmit the high resolution astronomical image and build the simulation environment where there is communication between the satellite and the Earth. Number experimental results show that the CS theory can effectively reduce the image transmission and reconstruction time. Even with a very low compression rate, it still can recover a higher quality astronomical image than JPEG and JPEG-2000 compression methods.
文摘Multipath arrivals in an Ultra-WideBand (UWB) channel have a long time intervals between clusters and rays where the signal takes on zero or negligible values. It is precisely the signal sparsity of the impulse response of the UWB channel that is exploited in this work aiming at UWB channel estimation based on Compressed Sensing (CS). However, these multipath arrivals mainly depend on the channel environments that generate different sparse levels (low-sparse or high-sparse) of the UWB channels. According to this basis, we have analyzed the two most basic recovery algorithms, one based on linear programming Basis Pursuit (BP), another using greedy method Orthogonal Matching Pursuit (OMP), and chosen the best recovery algorithm which are suitable to the sparse level for each type of channel environment. Besides, the results of this work is an open topic for further research aimed at creating a optimal algorithm specially for application of CS based UWB systems.
基金supported by the National Key Research and Development Plan(2018YFB1201601-12)。
文摘Due to unreliable and bandwidth-limited characteristics of communication link in networked control systems,the realtime compensated methods for single-output systems and multioutput systems are proposed in this paper based on the compressed sensing(CS)theory and sliding window technique,by which the estimates of dropping data packets in the feedback channel are obtained and the performance degradation induced by packet drops is reduced.Specifically,in order to reduce the cumulative error caused by the algorithm,the compensated estimates for single-output systems are corrected via the regularization term;considering the process of single-packet transmission,a new sequential CS framework of sensor data streams is introduced to effectively compensate the dropping packet on single-channel of multi-output systems;in presence of the medium access constraints on multi-channel,the communication sequence for scheduling is coupled to the algorithm and the estimates of the multiple sensors for multi-output systems are obtained via the regularization term.Simulation results illustrate that the proposed methods perform well and receive satisfactory performance.
基金Supported by the National Natural Science Foundation of China (No. 61071145)Universities Natural Science Research Project of Jiangsu Province (No.11KJB510008)
文摘Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sampling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of interested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Firstly, the CS principle is reviewed. Then the ambiguity function of Multiple-Input Multiple-Output (MIMO) radar is deduced. After that, combined with CS theory, the ambiguity function of MIMO radar is analyzed and simulated in detail. At last, the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed. Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent. But the coherent ambiguity function has higher side lobes, which caused a deterioration in radar target detection performances. The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed. And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection.
基金Supported by the National Natural Science Foundation of China(No.60472058,60975017)the Fundamental Research Funds for the Central Universities(No.2009B32614,2009B32414)
文摘Based on the approximate sparseness of speech in wavelet basis,a compressed sensing theory is applied to compress and reconstruct speech signals.Compared with one-dimensional orthogonal wavelet transform(OWT),two-dimensional OWT combined with Dmeyer and biorthogonal wavelet is firstly proposed to raise running efficiency in speech frame processing,furthermore,the threshold is set to improve the sparseness.Then an adaptive subgradient projection method(ASPM)is adopted for speech reconstruction in compressed sensing.Meanwhile,mechanism which adaptively adjusts inflation parameter in different iterations has been designed for fast convergence.Theoretical analysis and simulation results conclude that this algorithm has fast convergence,and lower reconstruction error,and also exhibits higher robustness in different noise intensities.
基金Supported by the National Natural Science Foundation of China(Nos.61401049 and 61201346)Postdoctoral Science Foundation of China(No.2014M560703)+1 种基金Chongqing Postdoctoral Science Foundation(No.Xm2014105)the Fundamental Research Funds for the Central Universities(Nos.CDJZR14125501 and 106112015CDJRC121103)
文摘This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image of test object from incomplete detection data. According to binary CT image characteristics, we employ Splitbregman method based on L1/2regularization to solve piecewise constant region reconstruction. To improve the reconstructed image quality from incomplete detection data, we utilize a priori knowledge and Otsu's method as the optimization constraint. In our study, we make numerical simulation to investigate our proposed method,and compare reconstructed results from different reconstruction methods. Finally, the experimental results demonstrate that the proposed method could effectively reduce noise and suppress artifacts, and reconstruct high-quality binary image from incomplete detection data.
基金The National Natural Science Foundation of China (No.60872075)the National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)
文摘In order to reduce the pilot number and improve spectral efficiency, recently emerged compressive sensing (CS) is applied to the digital broadcast channel estimation. According to the six channel profiles of the European Telecommunication Standards Institute(ETSI) digital radio mondiale (DRM) standard, the subspace pursuit (SP) algorithm is employed for delay spread and attenuation estimation of each path in the case where the channel profile is identified and the multipath number is known. The stop condition for SP is that the sparsity of the estimation equals the multipath number. For the case where the multipath number is unknown, the orthogonal matching pursuit (OMP) algorithm is employed for channel estimation, while the stop condition is that the estimation achieves the noise variance. Simulation results show that with the same number of pilots, CS algorithms outperform the traditional cubic-spline-interpolation-based least squares (LS) channel estimation. SP is also demonstrated to be better than OMP when the multipath number is known as a priori.
文摘Face hallucination or super-resolution is an inverse problem which is underdetermined,and the compressive sensing(CS)theory provides an effective way of seeking inverse problem solutions.In this paper,a novel compressive sensing based face hallucination method is presented,which is comprised of three steps:dictionary learning、sparse coding and solving maximum a posteriori(MAP)formulation.In the first step,the K-SVD dictionary learning algorithm is adopted to obtain a dictionary which can sparsely represent high resolution(HR)face image patches.In the second step,we seek the sparsest representation for each low-resolution(LR)face image paches input using the learned dictionary,super resolution image blocks are obtained from the sparsest coefficients and dictionaries,which then are assembled into super-resolution(SR)image.Finally,MAP formulation is introduced to satisfy the consistency restrictive condition and obtain the higher quality HR images.The experimental results demonstrate that our approach can achieve better super-resolution faces compared with other state-of-the-art method.
基金supported by National science foundation(No. 60772035): Key technique study on heterogeneous network convergenceDoctoral grant(No.20070004010)s: Study on cross layer design for heterogeneous network convergence+1 种基金National 863 Hi-Tech Projects(No.2007AA01Z277): Pa-rameter design based electromagnetic compatibility study in cognitive radio communication systemNational science foundation(No. 60830001): Wireless communication fundamentals and key techniuqes for high speed rail way control and safety data transmission
文摘Ultra-wide-band (UWB) signals are suitable for localization, since their high time resolution can provide precise time of arrival (TOA) estimation. However, one major challenge in UWB signal processing is the requirement of high sampling rate which leads to complicated signal processing and expensive hardware. In this paper, we present a novel UWB signal sampling method called UWB signal sampling via temporal sparsity (USSTS). Its sampling rate is much lower than Nyquist rate. Moreover, it is implemented in one step and no extra processing unit is needed. Simulation results show that USSTS can not recover the signal precisely, but for the use in localization, the accuracy of TOA estimation is the same as that in traditional methods. Therefore, USSTS gives a novel and effective solution for the use of UWB signals in localization.