This paper develops fast multiscale collocation methods for a class of Fredholm integral equations of the second kind with singular kernels. A truncation strategy for the coefficient matrix of the corresponding discre...This paper develops fast multiscale collocation methods for a class of Fredholm integral equations of the second kind with singular kernels. A truncation strategy for the coefficient matrix of the corresponding discrete system is proposed, which forms a basis for fast algorithms. The convergence, stability and computational complexity of these algorithms are analyzed.展开更多
In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equation...In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equations with certain analytic inputs. They obtain both the conditions of solvability and the solutions in closed form. It is noteworthy that the method is different from the classical one that is due to Lu.展开更多
1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution...1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution (v) does not depend continuously on the data (g). In order to treat the ill-posedness and develop the numerical method, one reformulates the problem as a Volterra integral equation of the first kind wish a convolution type kernel (see Sneddon [1], Carslaw and Jaeger [2])展开更多
In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of...In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.展开更多
In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function...In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method.展开更多
We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utiliz...We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.展开更多
Stress intensity factors for a three dimensional rectangular interfacial crack were considered using the body force method. In the numerical calculations, unknown body force densities were approximated by the products...Stress intensity factors for a three dimensional rectangular interfacial crack were considered using the body force method. In the numerical calculations, unknown body force densities were approximated by the products of the fundamental densities and power series; here the fundamental densities are chosen to express singular stress fields due to an interface crack exactly. The calculation shows that the numerical results are satisfied. The stress intensity factors for a rectangular interface crack were indicated accurately with the varying aspect ratio, and bimaterial parameter.展开更多
In this paper, a new collocation BEM for the Robin boundary value problem of the conductivity equation ▽(γ▽u) = 0 is discussed, where the γ is a piecewise constant function. By the integral representation formula ...In this paper, a new collocation BEM for the Robin boundary value problem of the conductivity equation ▽(γ▽u) = 0 is discussed, where the γ is a piecewise constant function. By the integral representation formula of the solution of the conductivity equation on the boundary and interface, the boundary integral equations are obtained. We discuss the properties of these integral equations and propose a collocation method for solving these boundary integral equations. Both the theoretical analysis and the error analysis are presented and a numerical example is given.展开更多
In this paper,a Chebyshev-collocation spectral method is developed for Volterra integral equations(VIEs)of second kind with weakly singular kernel.We first change the equation into an equivalent VIE so that the soluti...In this paper,a Chebyshev-collocation spectral method is developed for Volterra integral equations(VIEs)of second kind with weakly singular kernel.We first change the equation into an equivalent VIE so that the solution of the new equation possesses better regularity.The integral term in the resulting VIE is approximated by Gauss quadrature formulas using the Chebyshev collocation points.The convergence analysis of this method is based on the Lebesgue constant for the Lagrange interpolation polynomials,approximation theory for orthogonal polynomials,and the operator theory.The spectral rate of convergence for the proposed method is established in the L^(∞)-norm and weighted L^(2)-norm.Numerical results are presented to demonstrate the effectiveness of the proposed method.展开更多
A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of fun...A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm our theoretical analysis.展开更多
The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersi...The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersingular integral equation with the map x=cot(θ/2). Second, we initiate the study of the multiscale Galerkin method for the 2π-periodic hypersingular integral equation. The trigonometric wavelets are used as trial functions. Consequently, the 2j+1 × 2j+1 stiffness matrix Kj can be partitioned j×j block matrices. Furthermore, these block matrices are zeros except main diagonal block matrices. These main diagonal block matrices are symmetrical and circulant matrices, and hence the solution of the associated linear algebraic system can be solved with the fast Fourier transform and the inverse fast Fourier transform instead of the inverse matrix. Finally, we provide several numerical examples to demonstrate our method has good accuracy even though the exact solutions are multi-peak and almost singular.展开更多
While the approximate solutions of one-dimensional nonlinear Volterra-Fredholm integral equations with smooth kermels are now well understood,no systematic studies of the numerical solutions of their multi-dimensional...While the approximate solutions of one-dimensional nonlinear Volterra-Fredholm integral equations with smooth kermels are now well understood,no systematic studies of the numerical solutions of their multi-dimensional counterparts exist.In this paper,we provide an efficient numerical approach for the multi-dimensional nonlinear Volterra-Fredholm integral equations based on the multi-variate Legendre-collocation approach.Spectral collocation methods for multi-dimensional nonlinear integral equations are known to cause major difficulties from a convergence analysis point of view.Consequently,rigorous error estimates are provided in the weighted Sobolev space showing the exponential decay of the numerical errors.The existence and uniqueness of the numerical solution are established.Numerical experiments are provided to support the theoretical convergence analysis.The results indicate that our spectral collocation method is more flexible with better accuracy than the existing ones.展开更多
Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, a...Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated.展开更多
When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current p...When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new al- gorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore, when solving the Helmholtz problems, the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.展开更多
A singular integral equation method is proposed to analyze the two-dimensional(2D)multiple cracks in anisotropic piezoelectric bimaterial.Using the Somigliana formula,a set of singular integral equations for the multi...A singular integral equation method is proposed to analyze the two-dimensional(2D)multiple cracks in anisotropic piezoelectric bimaterial.Using the Somigliana formula,a set of singular integral equations for the multiple crack problems are derived,in which the unknown functions are the derivatives of the generalized displacement discontinuities of the crack surfaces.Then,the exact analytical solution of the extended singular stresses and extended stress intensity factors near the crack tip is obtained.Singular integrals of the singular integral equations are computed by the Gauss-Chebyshev collocation method.Finally,numerical solutions of the extended stress intensity factors of some examples are presented and discussed.展开更多
This paper proposes a new technique to speed up the computation of the matrix of spectral collocation discretizations of surface single and double layer operators over a spheroid.The layer densities are approximated b...This paper proposes a new technique to speed up the computation of the matrix of spectral collocation discretizations of surface single and double layer operators over a spheroid.The layer densities are approximated by a spectral expansion of spherical harmonics and the spectral collocation method is then used to solve surface integral equations of potential problems in a spheroid.With the proposed technique,the computation cost of collocation matrix entries is reduced from O(M2N4)to O(MN4),where N2 is the number of spherical harmonics(i.e.,size of the matrix)and M is the number of one-dimensional integration quadrature points.Numerical results demonstrate the spectral accuracy of the method.展开更多
In this paper,the collocation methods are used to solve the boundary integral equations of the first kind on the polygon.By means of Sidi’s periodic transformation and domain decomposition,the errors are proved to po...In this paper,the collocation methods are used to solve the boundary integral equations of the first kind on the polygon.By means of Sidi’s periodic transformation and domain decomposition,the errors are proved to possess the multi-parameter asymptotic expansion at the interior point with the powers h^(3)/_(i)(i=1,...,d),which means that the approximations of higher accuracy and a posteriori estimation of the errors can be obtained by splitting extrapolations.Numerical experiments are carried out to show that the methods are very efficient.展开更多
A fully discrete version of a piecewise polynomial collocation method based on new collocation points, is constructed to solve nonlinear Volterra-Fredholm integral equations. In this paper, we obtain existence and uni...A fully discrete version of a piecewise polynomial collocation method based on new collocation points, is constructed to solve nonlinear Volterra-Fredholm integral equations. In this paper, we obtain existence and uniqueness results and analyze the convergence properties of the collocation method when used to approximate smooth solutions of Volterra- Fredholm integral equations.展开更多
In this paper, a novel class of exponential Fourier collocation methods (EFCMs) is presented for solving systems of first-order ordinary differential equations. These so-called exponential Fourier collocation method...In this paper, a novel class of exponential Fourier collocation methods (EFCMs) is presented for solving systems of first-order ordinary differential equations. These so-called exponential Fourier collocation methods are based on the variation-of-constants formula, incorporating a local Fourier expansion of the underlying problem with collocation meth- ods. We discuss in detail the connections of EFCMs with trigonometric Fourier colloca- tion methods (TFCMs), the well-known Hamiltonian Boundary Value Methods (HBVMs), Gauss methods and Radau IIA methods. It turns out that the novel EFCMs are an es- sential extension of these existing methods. We also analyse the accuracy in preserving the quadratic invariants and the Hamiltonian energy when the underlying system is a Hamiltonian system. Other properties of EFCMs including the order of approximations and the convergence of fixed-point iterations are investigated as well. The analysis given in this paper proves further that EFCMs can achieve arbitrarily high order in a routine manner which allows us to construct higher-order methods for solving systems of first- order ordinary differential equations conveniently. We also derive a practical fourth-order EFCM denoted by EFCM(2,2) as an illustrative example. The numerical experiments using EFCM(2,2) are implemented in comparison with an existing fourth-order HBVM, an energy-preserving collocation method and a fourth-order exponential integrator in the literature. The numerical results demonstrate the remarkable efficiency and robustness of the novel EFCM(2,2).展开更多
By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. I...By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. In the numerical analysis, unknown displacement discontinuities are approximated with the products of the fundamental density functions and power series. The fundamental functions are chosen to express a two-dimensional interface crack rigorously. As illustrative examples, the stress intensity factors for two rectangular interface cracks are calculated for various spacing, crack shape and elastic constants. It is shown that the stress intensity factors decrease with the crack spacing.展开更多
基金The NSF (10371137 and 10201034) of China,the Foundation (20030558008) of Doctoral Program of National Higher Education,Guangdong Provincial Natural Science Foundation (1011170) of China and the Foundation of Zhongshan University Advanced Research Center.
文摘This paper develops fast multiscale collocation methods for a class of Fredholm integral equations of the second kind with singular kernels. A truncation strategy for the coefficient matrix of the corresponding discrete system is proposed, which forms a basis for fast algorithms. The convergence, stability and computational complexity of these algorithms are analyzed.
基金Project was supported by RFDP of Higher Education and NNSF of China, SF of Wuhan University
文摘In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equations with certain analytic inputs. They obtain both the conditions of solvability and the solutions in closed form. It is noteworthy that the method is different from the classical one that is due to Lu.
文摘1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution (v) does not depend continuously on the data (g). In order to treat the ill-posedness and develop the numerical method, one reformulates the problem as a Volterra integral equation of the first kind wish a convolution type kernel (see Sneddon [1], Carslaw and Jaeger [2])
文摘In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.
文摘In this paper, we derive a simple and efficient matrix formulation using Laguerre polynomials to solve the singular integral equation with degenerate kernel. This method is based on replacement of the unknown function by truncated series of well known Laguerre expansion of functions. This leads to a system of algebraic equations with Laguerre coefficients. Thus, by solving the matrix equation, the coefficients are obtained. Some numerical examples are included to demonstrate the validity and applicability of the proposed method.
基金The NNSF (10371137 and 10201034) of Chinathe Foundation (20030558008) of Doctoral Program of National Higher Education, Guangdong Provincial Natural Science Foundation (1011170) of China and the Advanced Research Foundation of Zhongshan UniversityThe US National Science Foundation (9973427 and 0312113)NSF (10371122) of China and the Chinese Academy of Sciences under the program of "Hundred Distinguished Young Chinese Scientists."
文摘We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.
文摘Stress intensity factors for a three dimensional rectangular interfacial crack were considered using the body force method. In the numerical calculations, unknown body force densities were approximated by the products of the fundamental densities and power series; here the fundamental densities are chosen to express singular stress fields due to an interface crack exactly. The calculation shows that the numerical results are satisfied. The stress intensity factors for a rectangular interface crack were indicated accurately with the varying aspect ratio, and bimaterial parameter.
基金This research is partially supported by NFS of China (No. 10271032).
文摘In this paper, a new collocation BEM for the Robin boundary value problem of the conductivity equation ▽(γ▽u) = 0 is discussed, where the γ is a piecewise constant function. By the integral representation formula of the solution of the conductivity equation on the boundary and interface, the boundary integral equations are obtained. We discuss the properties of these integral equations and propose a collocation method for solving these boundary integral equations. Both the theoretical analysis and the error analysis are presented and a numerical example is given.
基金The authorswould like to thank the referees for the helpful suggestions.Thiswork is supported by National Science Foundation of China(Nos.91430104,11671157 and 11401347)Lingnan Normal University Project(No.2014YL1408)。
文摘In this paper,a Chebyshev-collocation spectral method is developed for Volterra integral equations(VIEs)of second kind with weakly singular kernel.We first change the equation into an equivalent VIE so that the solution of the new equation possesses better regularity.The integral term in the resulting VIE is approximated by Gauss quadrature formulas using the Chebyshev collocation points.The convergence analysis of this method is based on the Lebesgue constant for the Lagrange interpolation polynomials,approximation theory for orthogonal polynomials,and the operator theory.The spectral rate of convergence for the proposed method is established in the L^(∞)-norm and weighted L^(2)-norm.Numerical results are presented to demonstrate the effectiveness of the proposed method.
基金This research is partially supported by the GRF grants of Hong Kong Research Grant Council the FRG grants of Hong Kong Baptist University+2 种基金 the US National Science Foundation through grant DMS-0612908 the Ministry of Education of China through the Changjiang Scholars program and Guangdong Provincial Government of China through the "Computational Science Innovative Research Team" program.
文摘A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm our theoretical analysis.
文摘The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersingular integral equation with the map x=cot(θ/2). Second, we initiate the study of the multiscale Galerkin method for the 2π-periodic hypersingular integral equation. The trigonometric wavelets are used as trial functions. Consequently, the 2j+1 × 2j+1 stiffness matrix Kj can be partitioned j×j block matrices. Furthermore, these block matrices are zeros except main diagonal block matrices. These main diagonal block matrices are symmetrical and circulant matrices, and hence the solution of the associated linear algebraic system can be solved with the fast Fourier transform and the inverse fast Fourier transform instead of the inverse matrix. Finally, we provide several numerical examples to demonstrate our method has good accuracy even though the exact solutions are multi-peak and almost singular.
文摘While the approximate solutions of one-dimensional nonlinear Volterra-Fredholm integral equations with smooth kermels are now well understood,no systematic studies of the numerical solutions of their multi-dimensional counterparts exist.In this paper,we provide an efficient numerical approach for the multi-dimensional nonlinear Volterra-Fredholm integral equations based on the multi-variate Legendre-collocation approach.Spectral collocation methods for multi-dimensional nonlinear integral equations are known to cause major difficulties from a convergence analysis point of view.Consequently,rigorous error estimates are provided in the weighted Sobolev space showing the exponential decay of the numerical errors.The existence and uniqueness of the numerical solution are established.Numerical experiments are provided to support the theoretical convergence analysis.The results indicate that our spectral collocation method is more flexible with better accuracy than the existing ones.
文摘Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated.
文摘When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new al- gorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore, when solving the Helmholtz problems, the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.
基金The authors would like to express their special thanks to the National Natural Science Foundation of China(Project No.11172320).
文摘A singular integral equation method is proposed to analyze the two-dimensional(2D)multiple cracks in anisotropic piezoelectric bimaterial.Using the Somigliana formula,a set of singular integral equations for the multiple crack problems are derived,in which the unknown functions are the derivatives of the generalized displacement discontinuities of the crack surfaces.Then,the exact analytical solution of the extended singular stresses and extended stress intensity factors near the crack tip is obtained.Singular integrals of the singular integral equations are computed by the Gauss-Chebyshev collocation method.Finally,numerical solutions of the extended stress intensity factors of some examples are presented and discussed.
基金Financial support for this work was provided by the National Institutes of Health(grant number:1R01GM083600-01)Z.Xu is also partially supported by the Charlotte Research Institute through a Duke Postdoctoral Fellowship.
文摘This paper proposes a new technique to speed up the computation of the matrix of spectral collocation discretizations of surface single and double layer operators over a spheroid.The layer densities are approximated by a spectral expansion of spherical harmonics and the spectral collocation method is then used to solve surface integral equations of potential problems in a spheroid.With the proposed technique,the computation cost of collocation matrix entries is reduced from O(M2N4)to O(MN4),where N2 is the number of spherical harmonics(i.e.,size of the matrix)and M is the number of one-dimensional integration quadrature points.Numerical results demonstrate the spectral accuracy of the method.
文摘In this paper,the collocation methods are used to solve the boundary integral equations of the first kind on the polygon.By means of Sidi’s periodic transformation and domain decomposition,the errors are proved to possess the multi-parameter asymptotic expansion at the interior point with the powers h^(3)/_(i)(i=1,...,d),which means that the approximations of higher accuracy and a posteriori estimation of the errors can be obtained by splitting extrapolations.Numerical experiments are carried out to show that the methods are very efficient.
文摘A fully discrete version of a piecewise polynomial collocation method based on new collocation points, is constructed to solve nonlinear Volterra-Fredholm integral equations. In this paper, we obtain existence and uniqueness results and analyze the convergence properties of the collocation method when used to approximate smooth solutions of Volterra- Fredholm integral equations.
文摘In this paper, a novel class of exponential Fourier collocation methods (EFCMs) is presented for solving systems of first-order ordinary differential equations. These so-called exponential Fourier collocation methods are based on the variation-of-constants formula, incorporating a local Fourier expansion of the underlying problem with collocation meth- ods. We discuss in detail the connections of EFCMs with trigonometric Fourier colloca- tion methods (TFCMs), the well-known Hamiltonian Boundary Value Methods (HBVMs), Gauss methods and Radau IIA methods. It turns out that the novel EFCMs are an es- sential extension of these existing methods. We also analyse the accuracy in preserving the quadratic invariants and the Hamiltonian energy when the underlying system is a Hamiltonian system. Other properties of EFCMs including the order of approximations and the convergence of fixed-point iterations are investigated as well. The analysis given in this paper proves further that EFCMs can achieve arbitrarily high order in a routine manner which allows us to construct higher-order methods for solving systems of first- order ordinary differential equations conveniently. We also derive a practical fourth-order EFCM denoted by EFCM(2,2) as an illustrative example. The numerical experiments using EFCM(2,2) are implemented in comparison with an existing fourth-order HBVM, an energy-preserving collocation method and a fourth-order exponential integrator in the literature. The numerical results demonstrate the remarkable efficiency and robustness of the novel EFCM(2,2).
基金supported by the National Natural Science Foundation of China (No. 10872213)
文摘By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. In the numerical analysis, unknown displacement discontinuities are approximated with the products of the fundamental density functions and power series. The fundamental functions are chosen to express a two-dimensional interface crack rigorously. As illustrative examples, the stress intensity factors for two rectangular interface cracks are calculated for various spacing, crack shape and elastic constants. It is shown that the stress intensity factors decrease with the crack spacing.