We prepose a 5-bit lattice Boltzmann model for KdV equation. Using Chapman-Enskog expansion and multiscale technique, we obtained high order moments of equilibrium distribution function, and the 3rd dispersion coeffic...We prepose a 5-bit lattice Boltzmann model for KdV equation. Using Chapman-Enskog expansion and multiscale technique, we obtained high order moments of equilibrium distribution function, and the 3rd dispersion coefficient and 4th order viscosity. The parameters of this scheme can be determined by analysing the energy dissipation.展开更多
基金The project supported by the Foundation of the Laboratory for Nonlinear Mechanics of Continuous Media,Institute of Mechanics,Chinese Academy of Sciences
文摘We prepose a 5-bit lattice Boltzmann model for KdV equation. Using Chapman-Enskog expansion and multiscale technique, we obtained high order moments of equilibrium distribution function, and the 3rd dispersion coefficient and 4th order viscosity. The parameters of this scheme can be determined by analysing the energy dissipation.