期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
基于Bi-TCN-LSTM的滚动轴承剩余使用寿命预测方法 被引量:1
1
作者 高萌 鲁玉军 《轻工机械》 CAS 2024年第3期66-73,79,共9页
由于时间卷积网络(temporal convolutional networks, TCN)感知场不足,轴承的关键退化信息常常被忽略,导致轴承剩余使用寿命(remaining useful life, RUL)预测结果不佳;而长短期记忆网络(long short-term memory, LSTM)随着数据量及序... 由于时间卷积网络(temporal convolutional networks, TCN)感知场不足,轴承的关键退化信息常常被忽略,导致轴承剩余使用寿命(remaining useful life, RUL)预测结果不佳;而长短期记忆网络(long short-term memory, LSTM)随着数据量及序列长度的增加,长期依赖问题仍可能得不到很好解决。因此,课题组提出了一种基于双向时间卷积网络和长短期记忆(Bi-TCN-LSTM)的滚动轴承寿命预测方法。首先对多传感器数据进行归一化并做融合处理,然后采用Bi-TCN-LSTM进行数据特征提取与深度学习,其中对TCN模块引入卷积注意力机制(convolutional attention module, CAM),将LSTM的3个门简化为1个门,有效加快了预测模型学习的速度并提高了预测模型的精确度;采用IEEE PHM 2012轴承数据集作为实验数据集,进行了RUL预测实验。结果表明:与其他先进的预测模型相比,Bi-TCN-LSTM方法预测结果的误差相对较低,预测性能较好。 展开更多
关键词 滚动轴承 剩余使用寿命预测 多传感器融合 时间卷积网络 长短期记忆网络
下载PDF
基于TCN和残差自注意力的变工况下滚动轴承剩余寿命迁移预测
2
作者 潘雪娇 董绍江 +2 位作者 朱朋 周存芳 宋锴 《振动与冲击》 EI CSCD 北大核心 2024年第1期145-152,共8页
针对变工况环境下采集到的滚动轴承寿命状态数据存在特征分布差异,深度神经网络模型泛化能力差的问题,结合时间卷积网络(temporal convolutional neural network,TCN)和残差自注意力机制提出了一种端到端的滚动轴承剩余寿命(remaining u... 针对变工况环境下采集到的滚动轴承寿命状态数据存在特征分布差异,深度神经网络模型泛化能力差的问题,结合时间卷积网络(temporal convolutional neural network,TCN)和残差自注意力机制提出了一种端到端的滚动轴承剩余寿命(remaining useful life,RUL)迁移预测方法。首先,将传感器采集到的一维时域信号利用短时傅里叶变换转换为频域信号;其次,剩余寿命迁移预测网络通用特征提取层采用残差自注意力TCN网络,该网络在较好提取时间序列信息的同时,进一步通过残差自注意力机制捕获轴承局部退化特征,增强模型的迁移特征提取能力;再次,采用提出的联合领域自适应策略匹配变工况下滚动轴承寿命状态数据特征分布差异,实现不同工况下轴承寿命状态知识的迁移预测;最后,在公开的滚动轴承全寿命数据集上进行试验验证,结果表明所提方法能有效实现变工况下的滚动轴承RUL预测,并获得较好的预测性能。 展开更多
关键词 剩余寿命(RUL) 滚动轴承 时间卷积网络(tcn) 残差自注意力 迁移学习
下载PDF
基于TCN-自适应的地下洞室围岩变形异常数据识别
3
作者 吴忠明 李天述 +3 位作者 张波 周明 张瀚 周靖人 《人民长江》 北大核心 2024年第8期216-221,共6页
水电站地下洞室围岩变形数据具有变化不确定、序列样本短等特点,传统的异常识别方法漏识率、误判率较高。随着智能技术的发展,通过神经网络建立更加可靠的异常识别方法是目前研究的热点,而传统的神经网络存在时序关联性不强和计算模型... 水电站地下洞室围岩变形数据具有变化不确定、序列样本短等特点,传统的异常识别方法漏识率、误判率较高。随着智能技术的发展,通过神经网络建立更加可靠的异常识别方法是目前研究的热点,而传统的神经网络存在时序关联性不强和计算模型庞杂等问题。为此,提出了基于时域卷积神经网络(TCN)及标准自适应的地下洞室异常数据识别算法,该算法利用TCN技术,考虑序列的前后关系,建立了更为可靠的序列模型;同时针对地下洞室监测数据特征,通过考虑误差中位数、数据波动和仪器精度3个方面,突现自适应匹配最优识别准则。将该算法应用在叶巴滩水电站地下洞室围岩变形的异常数据识别中,证明了其可有效避免梯度爆炸、消失,模型耗时较长等问题,极大地提高了异常值分析效率和识别率。相关经验可供类似工程异常监测数据识别时借鉴。 展开更多
关键词 异常数据识别 地下洞室 深度学习 时域卷积神经网络 标准自适应
下载PDF
融合2维卷积与注意力以预测PM_(2.5)浓度的S-TCN模型
4
作者 李春辉 张瑛琪 孙洁 《国外电子测量技术》 2024年第1期77-86,共10页
针对传统预测模型对PM_(2.5)浓度预测精度较低、可解释性差的缺陷,提出一种融合2维卷积层(2D convolution)和注意力层的时空卷积网络预测模型(spatio-2D-temporal convolutional networks attention, S-2D-TCNA)。选取北京市2014年5月1... 针对传统预测模型对PM_(2.5)浓度预测精度较低、可解释性差的缺陷,提出一种融合2维卷积层(2D convolution)和注意力层的时空卷积网络预测模型(spatio-2D-temporal convolutional networks attention, S-2D-TCNA)。选取北京市2014年5月1日~2015年4月30日的36个监测站点逐小时空气质量和气象数据,通过对多个站点时空相关性分析,将符合相关性阈值的监测站数据输入至卷积进行升维再降维的处理方式,得出具有时空序列的输入特征;将注意力融入时间卷积网络预测模型,用于预测未来1 h的中心监测站PM_(2.5)浓度。在模型训练优化参数过程中,通过Adam来训练深度学习模型的参数,然后使用贝叶斯优化来调整模型的超参数,这种方法能找到模型的最佳参数,使其均方根误差、平均绝对误差分别减少3.791%和5.576%,拟合优度增大0.67%;在质量方面,所提出的S-Conv2D-TCNA模型均方根误差、平均绝对误差和拟合优度分别为16.020 9、10.610 0和0.942 8,该预测模型在准确性和稳定性方面优于基线模型。结果表明,该预测模型空气污染的预警、区域预防和控制方面大有可为。 展开更多
关键词 时空序列 注意力 时间卷积网络(tcn) PM_(2.5)浓度
下载PDF
引入注意力机制和参数优化的TCN短期风电功率预测
5
作者 柳天虹 乔显著 +2 位作者 菅利彬 晋成凤 孙康艳 《电力系统及其自动化学报》 CSCD 北大核心 2024年第9期88-95,共8页
为提高短期风电功率预测的准确性,提出一种基于频率注意力机制和粒子群优化的时间卷积网络短期风电功率预测模型。首先,利用灰色关联分析方法计算气象变量与风电功率的关联度,选取特征变量;其次,引入频率注意力机制改进时间卷积网络残差... 为提高短期风电功率预测的准确性,提出一种基于频率注意力机制和粒子群优化的时间卷积网络短期风电功率预测模型。首先,利用灰色关联分析方法计算气象变量与风电功率的关联度,选取特征变量;其次,引入频率注意力机制改进时间卷积网络残差块,赋予通道不同权重,并基于粒子群优化算法优化时间卷积网络超参数,搭建预测模型;最后,以黑龙江某风电场实测数据为例进行仿真分析,实验结果表明,所提方法能够充分提取风电功率序列的时序特征,提高短期风电功率预测精度。 展开更多
关键词 时间卷积网络 风电功率预测 频率注意力机制 粒子群优化算法 灰色关联分析
下载PDF
基于特征选择策略和TCN的电力负荷预测方法
6
作者 袁文辉 张仰飞 《信息技术》 2024年第4期9-14,21,共7页
电力负荷由于受到多种外部因素影响,具有较大的波动性和随机性,使得高精度的负荷预测十分困难。为有效处理高维特征以提高模型预测精度,提出了一种基于特征选择策略和时间卷积神经网络的电力负荷预测方法。首先,采用基于极端梯度提升树... 电力负荷由于受到多种外部因素影响,具有较大的波动性和随机性,使得高精度的负荷预测十分困难。为有效处理高维特征以提高模型预测精度,提出了一种基于特征选择策略和时间卷积神经网络的电力负荷预测方法。首先,采用基于极端梯度提升树的特征选择策略,深度挖掘与负荷关联性强的特征作为预测模型的输入;其次,构建基于时间卷积神经网络(TCN)的电力负荷预测模型,对特征选择后的负荷数据进行预测;最后,采用某市真实负荷数据进行仿真分析。结果表明,文中所提方法与传统预测方法相比,具有更高的预测精度。 展开更多
关键词 多维特征 负荷预测 极端梯度提升树 特征选择策略 时间卷积神经网络
下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM
7
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze temporal convolutional network(tcn) Long short-term memory(LSTM) Layer counting Multi-source fusion
下载PDF
基于多尺度LDTW和TCN的空间负荷预测方法
8
作者 马越 温蜜 《计算机工程》 CAS CSCD 北大核心 2024年第3期106-113,共8页
空间负荷预测为合理建设和使用变电站、馈线等提供了重要的指导,成为配电网规划中不可或缺的一部分。配电网规划的精细化产生了大量高分辨率的负荷数据,社会的快速发展使得地块的用电特征日趋复杂。当前的空间负荷预测没有充分考虑负荷... 空间负荷预测为合理建设和使用变电站、馈线等提供了重要的指导,成为配电网规划中不可或缺的一部分。配电网规划的精细化产生了大量高分辨率的负荷数据,社会的快速发展使得地块的用电特征日趋复杂。当前的空间负荷预测没有充分考虑负荷数据之间的时间特性,且在预测过程中也未考虑到不同类型地块间可能存在的负荷峰值出现时间不一致问题。为此,提出一种空间负荷预测方法,通过基于多尺度限制对齐路径长度(LDTW)的谱聚类分析用户的负荷曲线在形状上的相似性,并提取不同地块的典型用电行为,以进一步分类确定同类型地块对应的同时率。多尺度LDTW通过限制序列之间匹配步长的上限来抑制病态匹配的产生,提高曲线相似性的综合评估能力。根据聚类结果筛选适合待预测区域的训练样本并构建基于时间卷积网络(TCN)的回归预测模型,将预测结果基于地块各自的同时率进行聚合,实现空间负荷预测。实验结果表明:该方法加强了对负荷曲线形状的分析和对不同类型地块同时率的区分,在聚类方面,DBI指数达到0.57,VI指数达到0.31;在预测方面,相对误差达到1.93%,决定系数达到0.941,相比其他典型方法均取得了较大改善。 展开更多
关键词 空间负荷预测 动态时间规整 谱聚类 同时率 时间卷积网络
下载PDF
Blood Glucose Prediction Model Based on Prophet and Temporal Convolutional Networks
9
作者 Rong Xiao Jing Chen +1 位作者 Lei Wang Wei Liu 《Journal of Beijing Institute of Technology》 EI CAS 2022年第4期413-421,共9页
Diabetes,as a chronic disease,is caused by the increase of blood glucose concentration due to pancreatic insulin production failure or insulin resistance in the body.Predicting the change trend of blood glucose level ... Diabetes,as a chronic disease,is caused by the increase of blood glucose concentration due to pancreatic insulin production failure or insulin resistance in the body.Predicting the change trend of blood glucose level in advance brings convenience for prompt treatment,so as to maintain blood glucose level within the recommended levels.Based on the flash glucose monitoring data,we propose a method that combines prophet with temporal convolutional networks(TCN)to achieve good experimental results in predicting patient blood glucose.The proposed model achieves high accuracy in the long-term and short-term prediction of blood glucose,and outperforms other models on the adaptability to non-stationary and detection capability of periodic changes. 展开更多
关键词 blood glucose temporal convolutional networks(tcn) seasonal decomposition
下载PDF
基于联合时序场景和改进TCN的高比例新能源电网负荷预测
10
作者 许青 张龄之 +1 位作者 梁琛 李亚昕 《广东电力》 北大核心 2024年第1期1-7,共7页
为充分挖掘新型电力系统建设过程中高比例新能源并网对负荷预测的影响,以风光负荷数据为研究对象,提出一种基于联合时序场景和改进型时间卷积网络的短期负荷预测方法。首先,基于3σ准则对风光负荷历史数据进行分析,剔除异常数据,然后应... 为充分挖掘新型电力系统建设过程中高比例新能源并网对负荷预测的影响,以风光负荷数据为研究对象,提出一种基于联合时序场景和改进型时间卷积网络的短期负荷预测方法。首先,基于3σ准则对风光负荷历史数据进行分析,剔除异常数据,然后应用联合时序场景刻画负荷需求与风光出力的相关性,分类出不同负荷预测场景。接着,利用随机森林算法进行负荷预测特征量提取,构建随机森林时间卷积网络(RF-TCN)预测模型,并采用Bootstrap算法对预测结果进行修正。最后,以甘肃省2022年数据为例进行仿真,并设置4种对比算例。仿真结果证明了所提方法的有效性,以期在新型电力系统建设过程中发挥积极作用。 展开更多
关键词 新型电力系统 联合时序场景 高比例新能源电网 负荷预测 3σ准则 时间卷积网络 随机森林 BOOTSTRAP法
下载PDF
基于BiLSTM-SA-TCN时间序列模型在股票预测中的应用 被引量:3
11
作者 杨智勇 叶玉玺 周瑜 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第6期643-651,共9页
针对股票预测模型存在时效性和预测功能单一化的问题,本文在长短期记忆网络(LSTM)的基础上,提出了融合自注意力机制(SA)和时间卷积网络(TCN)的双向长短期记忆(BiLSTM)神经网络(BiLSTM-SA-TCN)股票预测模型.BiLSTM-SA-TCN模型中的学习单... 针对股票预测模型存在时效性和预测功能单一化的问题,本文在长短期记忆网络(LSTM)的基础上,提出了融合自注意力机制(SA)和时间卷积网络(TCN)的双向长短期记忆(BiLSTM)神经网络(BiLSTM-SA-TCN)股票预测模型.BiLSTM-SA-TCN模型中的学习单元和预测单元可以有效学习重要的股票数据,同时能够抓取长时间的依赖信息,输出次日股票收盘价预测值.实验结果表明,BiLSTM-SA-TCN模型在多个数据集上的预测结果更加稳定,模型泛化能力较高,在对比实验中,BiLSTM-SA-TCN模型在大部分数据集上均方根误差最小,平均绝对值误差最小,拟合度R^(2)最优. 展开更多
关键词 股票价格预测 长短期记忆网络 注意力机制 时间卷积网络
下载PDF
采用TCN-HS的滚动轴承剩余使用寿命预测 被引量:1
12
作者 王体春 吴广胜 +1 位作者 咸玉贝 胡玉峰 《重庆理工大学学报(自然科学)》 北大核心 2023年第6期204-211,共8页
滚动轴承作为旋转机械中的关键部件,对其剩余使用寿命RUL(remained useful life)的准确预测可以帮助维修人员及时制定维修计划,延长设备工作时间,保证安全。由于利用数学建模精确建立轴承退化过程的模型涉及到复杂的物理过程,所以以深... 滚动轴承作为旋转机械中的关键部件,对其剩余使用寿命RUL(remained useful life)的准确预测可以帮助维修人员及时制定维修计划,延长设备工作时间,保证安全。由于利用数学建模精确建立轴承退化过程的模型涉及到复杂的物理过程,所以以深度学习为基础的基于数据驱动的方法已经成为主流方法。提出了一种融合混合膨胀卷积与自适应斜率软阈值函数的时间卷积神经网络TCN-HS(temporal convolutional network with hybrid dilated convolution and self-adaptive slope thresholding)用于滚动轴承寿命预测。模型使用混合膨胀卷积HDC(hybrid dilated convolution)解决了栅格效应问题,并利用自适应斜率软阈值函数(self-adaptive slope thresholding)进一步筛选特征。为了验证TCN-HS模型的有效性,基于PHM2012轴承数据集进行了实验,结果表明:改进方法提升了模型的性能,预测结果准确。 展开更多
关键词 剩余寿命预测 时间卷积神经网络 混合膨胀卷积 自适应斜率软阈值函数
下载PDF
基于IAPSO-Holt-TCN的时序瓦斯浓度预测模型
13
作者 温廷新 陈思宇 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第7期57-62,共6页
为了提升时序瓦斯浓度预测精度,提出1种基于特征组合(FCIH)-时间卷积网络(TCN)的预测模型。首先,基于粒子群(PSO)算法重构惯性权重和加速因子,设计自适应粒子群(IAPSO)寻优算法;然后,利用IAPSO优化霍尔特指数平滑(Holt)相关超参数,应用H... 为了提升时序瓦斯浓度预测精度,提出1种基于特征组合(FCIH)-时间卷积网络(TCN)的预测模型。首先,基于粒子群(PSO)算法重构惯性权重和加速因子,设计自适应粒子群(IAPSO)寻优算法;然后,利用IAPSO优化霍尔特指数平滑(Holt)相关超参数,应用Holt生成时序瓦斯浓度的水平、趋势分量,并与时序瓦斯浓度历史数据构成特征组合,以此获取具有高度预测性的特征;接着,基于构建的特征组合,搭建FCIH-TCN时序瓦斯浓度预测框架;最后,采用多个模型进行对比实验。研究结果表明:使用IAPSO后,Holt预测模型的平均绝对误差下降0.019;FCIH作为模型输入有效提高LSTM、GRU及TCN模型的预测精度;FCIH-TCN的RMSE为0.05,MAE为0.035,其预测精度优于其他对比模型。研究结果可为矿井瓦斯灾害防治提供参考。 展开更多
关键词 时序瓦斯浓度预测 特征组合 自适应粒子群 霍尔特指数平滑(Holt) 时间卷积网络(tcn)
下载PDF
基于TCN-BiLSTM的网络安全态势预测 被引量:6
14
作者 孙隽丰 李成海 曹波 《系统工程与电子技术》 EI CSCD 北大核心 2023年第11期3671-3679,共9页
针对现有网络安全态势预测模型预测精确度低和收敛速度慢的问题,提出一种基于时域卷积网络(temporal convolution network,TCN)和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络的预测方法。首先,将TCN处理时间序... 针对现有网络安全态势预测模型预测精确度低和收敛速度慢的问题,提出一种基于时域卷积网络(temporal convolution network,TCN)和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络的预测方法。首先,将TCN处理时间序列问题的优势应用到态势预测上学习态势值的序列特征;随后,引入注意力机制动态调整属性的权值;然后,利用BiLSTM模型学习态势值的前后状况,以提取序列中更多的信息进行预测;利用粒子群优化(particle swarm optimization,PSO)算法进行超参数寻优,提升预测能力。实验结果表明,所提预测方法的拟合度可达0.9995,其拟合效果和收敛速度均优于其他模型。 展开更多
关键词 网络安全 态势预测 时域卷积网络 双向长短期记忆网络 粒子群优化 注意力机制
下载PDF
基于CEEMDAN-TCN模型的河南省月降水量预测 被引量:2
15
作者 王硕 陈中举 +1 位作者 许浩然 黄小龙 《节水灌溉》 北大核心 2023年第8期26-33,共8页
针对水文时间序列非线性难以预测的特性,为进一步提高降水量的预测精度,提出一种基于自适应噪声的完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络(Temporal Convolution... 针对水文时间序列非线性难以预测的特性,为进一步提高降水量的预测精度,提出一种基于自适应噪声的完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络(Temporal Convolutional Network,TCN)的耦合模型,使用河南省1960年1月-2000年7月的月降水量数据,对2000年8月-2017年12月降水量进行预测。模型使用CEEMDAN将原始不平稳的降水量序列分解为一组相对平稳的子序列分量,再利用TCN对各子序列分别进行预测,将各子序列分量的预测结果叠加得到最终结果。为验证模型的有效性,将该模型与LSTM、TCN、CEEMDAN-LSTM模型进行对比。结果表明,CEEMDAN-TCN模型预测精度最高,相较于3种对比模型RMSE分别减少了42.82%、35.65%、18.12%,MAE分别减少了37.75%、27.53%、19.39%。在空间分布上,使用普通克里金插值法得到的CEEMDAN-TCN预测值与实际值的空间分布接近。综上,CEEMDAN方法可以有效降低月降水量数据的不平稳性,耦合CEEMDAN方法的组合模型较单一模型预测精度更高;CEEMDAN-TCN模型相较3种对比模型的预测精度均有不同程度提升,该方法将CEEMDAN信号分解技术、深度学习模型与降水量预测领域相结合,有效地提升了月降水量预测精度。 展开更多
关键词 降水量预测 模型精度比较 CEEMDAN-tcn 自适应噪声的完备经验模态分解 时间卷积网络 河南省 克里金插值法
下载PDF
基于TCN-MHA的短期光伏功率预测
16
作者 孙永叡 任晓颖 +2 位作者 张飞 高鹭 郝斌 《科技创新与应用》 2023年第29期8-12,共5页
光伏发电的波动性和随机性对电力系统安全稳定运行具有不良影响,为提高日前短期光伏功率预测精度进而提升光伏电站运营及电网调度效率,提出一种基于时间卷积神经网络(TCN)结合多头注意力机制(MHA)的光伏功率预测方法。首先TCN接收数据,... 光伏发电的波动性和随机性对电力系统安全稳定运行具有不良影响,为提高日前短期光伏功率预测精度进而提升光伏电站运营及电网调度效率,提出一种基于时间卷积神经网络(TCN)结合多头注意力机制(MHA)的光伏功率预测方法。首先TCN接收数据,利用膨胀卷积的结构改变感受野范围,利用因果卷积的设置提取光伏数据的时序特征;经过升维后输入MHA中,选择合适的多头个数,得到多个子空间,将输入特征进行不同维度的空间映射,进一步分配注意力权重;最后降维输入全连接层结合得到的特征信息对次日24 h的光伏功率进行预测。实验在实际光伏场站数据上进行,结果表明,所提模型的预测精度优于对比模型。 展开更多
关键词 光伏发电 短期功率预测 深度学习 时间卷积神经网络 注意力机制
下载PDF
基于TCN编码的锂离子电池SOH估计方法 被引量:3
17
作者 周航 程泽 +1 位作者 弓清瑞 刘旭 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第4期185-192,共8页
为了能够准确可靠地估计锂离子电池的健康状态(State of Health, SOH),提出一种基于时序卷积网络(Temporal Convolutional Network, TCN)的数据驱动模型来建立电池充电曲线与SOH之间的映射关系.TCN是一种由多层因果卷积组成的神经网络,... 为了能够准确可靠地估计锂离子电池的健康状态(State of Health, SOH),提出一种基于时序卷积网络(Temporal Convolutional Network, TCN)的数据驱动模型来建立电池充电曲线与SOH之间的映射关系.TCN是一种由多层因果卷积组成的神经网络,它能够对电池充电曲线上的采样点序列进行编码,通过编码得到的编码向量会更易于与SOH建立映射关系.实验结果表明所提基于TCN的SOH估计模型具有较高的估计精度,对不同种类的电池也有良好的适应能力. 展开更多
关键词 锂离子电池 充电曲线 健康状态 时序卷积网络 神经网络
下载PDF
基于CEEMDAN和TCN-LSTM模型的短期电力负荷预测 被引量:13
18
作者 赵星宇 吴泉军 朱威 《科学技术与工程》 北大核心 2023年第4期1557-1564,共8页
针对短期电力负荷数据随机性强,难以实现准确预测的问题,提出了一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络-长短期记忆网络(temporal convol... 针对短期电力负荷数据随机性强,难以实现准确预测的问题,提出了一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络-长短期记忆网络(temporal convolutional network-long short-term memory network,TCN-LSTM)混合模型的预测方法。所提算法先使用CEEMDAN方法将负荷数据分解为一系列相对平稳的子序列。同时为了降低后续计算规模,通过引入排列熵的方法将各子序列进行重组。然后,将各个重组序列输入到TCN-LSTM组合模型中,利用TCN模型提取特征并构建序列的特征向量,再基于LSTM模型对其进行训练及预测。最后把全部预测值进行相加得到完整的预测负荷值。通过使用欧洲某地真实负荷数据进行验证。结果表明:所提算法与其他常见的预测算法相比具有更高的预测精度,可为负荷预测等研究工作提供相关参考。 展开更多
关键词 自适应噪声的完备集合经验模态分解(CEEMDAN) 排列熵 时间卷积网络(tcn) 长短期记忆网络(LSTM) 短期电力负荷预测
下载PDF
基于改进ECANet-TCN和迁移学习的轴承剩余寿命预测 被引量:1
19
作者 王焱 丁华 +3 位作者 孙晓春 李莉 刘泽平 楚寒驰 《振动与冲击》 EI CSCD 北大核心 2023年第21期149-159,共11页
针对轴承运行工况不同、有效数据少、数据无标签、预测准确度低等问题,提出一种基于改进时间卷积网络的迁移学习轴承寿命预测模型,将模型在源域上学习的寿命预测知识迁移到目标域,可用小样本无标签数据训练出迁移模型。首先,采用有效通... 针对轴承运行工况不同、有效数据少、数据无标签、预测准确度低等问题,提出一种基于改进时间卷积网络的迁移学习轴承寿命预测模型,将模型在源域上学习的寿命预测知识迁移到目标域,可用小样本无标签数据训练出迁移模型。首先,采用有效通道注意力模块对源域数据特征重新标定;其次,使用时间卷积网络(temporal convolutional network,TCN)学习特征信息,并训练出最优源域模型;最后,利用源域数据、源域模型和目标域数据训练出迁移模型,迁移模型可以对不同设备不同工况信号进行剩余寿命预测。在IEEE PHM Challenge 2012轴承全寿命数据集和西安交通大学XJTU-SY滚动轴承加速寿命数据集上开展对比试验,结果表明,该方法可以更好地挖掘轴承内在退化趋势,有效提高剩余使用寿命预测精度,对比现有流行预测方法预测误差降低40.1%~77.8%,证明了该方法在不同设备不同工况条件下剩余寿命预测的有效性和可行性。 展开更多
关键词 轴承 剩余寿命预测 ECANet 时间卷积网络 迁移学习
下载PDF
基于TCN-CCRELMS的电力系统暂态稳定评估
20
作者 刘聪 刘颂凯 +3 位作者 刘礼煌 张磊 谭瑞 张雅婷 《电力系统及其自动化学报》 CSCD 北大核心 2023年第7期36-44,82,共10页
为进一步提高电力系统暂态稳定评估模型时序特征的提取能力及减少模型对失稳样本的漏判,本文提出一种将时间卷积网络与特定类别成本调节极限学习机相融合的暂态稳定评估方法。首先,利用时间卷积网络挖掘蕴藏在电力系统运行数据中的时序... 为进一步提高电力系统暂态稳定评估模型时序特征的提取能力及减少模型对失稳样本的漏判,本文提出一种将时间卷积网络与特定类别成本调节极限学习机相融合的暂态稳定评估方法。首先,利用时间卷积网络挖掘蕴藏在电力系统运行数据中的时序变化特性;然后,改进模型损失函数提升模型对失稳样本的感知能力,并采用集成学习策略提高模型的泛化能力;最后,通过算例分析证明了所提方法具有很好的预测性能和泛化能力,对噪声数据及数据缺失也具备较强的鲁棒性。 展开更多
关键词 机器学习 暂态稳定评估 时间卷积网络 特定类别成本调节极限学习机
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部