An innovation is conducted on a K190πK rail auto welding machine because of its poor stability in quality of welding joints. A new control system based on a programmable controller is designed to replace the old o...An innovation is conducted on a K190πK rail auto welding machine because of its poor stability in quality of welding joints. A new control system based on a programmable controller is designed to replace the old one. The new control system is of higher accuracy in controlling sequence and good ability in anti disturbance, and is convenient to operate. The comparison tests are carried out. The experimental results show that the quality of welded joints is greatly increased by the improved welding mechine.展开更多
The Ethernet and field-bus communications are used in the machine control system (MCS) of HL-2A. The control net, with a programmable logic controller (PLC) as its logic control master, an engineering control mana...The Ethernet and field-bus communications are used in the machine control system (MCS) of HL-2A. The control net, with a programmable logic controller (PLC) as its logic control master, an engineering control management station as its net server, and a timing control PC connected to a number of terminals, flexibly and freely transfers information among the nodes on it with the Ethernet transmission techniques. The PLC masters the field bus, which carries small pieces of information between PLC and the field sites reliably and quickly. The control net is connected into the data net, where Internet access and sharing of more experimental data are enabled. The communication in the MCS guarantees the digitalization, automation and centralization. Also provided are a satisfactory degree of safety, reliability, stability, expandability and flexibility for maintenance.展开更多
The pipeline all-position automatic welding machine system is a special welding system for automatically welding circumferential joint of pipeline on site, which has been widely used to the long-distance pipeline cons...The pipeline all-position automatic welding machine system is a special welding system for automatically welding circumferential joint of pipeline on site, which has been widely used to the long-distance pipeline construction projects due to the advantages of automatic control for welding parameters at all-position, moving speed of bugs and operating. In this paper, the key control technologies of PAWM all-position automatic welding machine ( developed by Pipeline Research Institute of CNPC) such us the automatic control system, control software, personal digital assistant (PDA) software and complex programmable logic device ( CPLD ) program as well us the control method of welding parameter have been described detailedly. With the higher welding quality, higher welding effwiency and lower labor intensity, PA WM all-position automatic welding machine has been successfully applied in many famous pipeline construction projects.展开更多
This paper describes the replacement of a controller for a programmable universal machine for assembly (PUMA) 512 robot with a newly designed PC based (open architecture) controller employing a real-time direct contro...This paper describes the replacement of a controller for a programmable universal machine for assembly (PUMA) 512 robot with a newly designed PC based (open architecture) controller employing a real-time direct control of six joints. The original structure of the PUMA robot is retained. The hardware of the new controller includes such in-house designed parts as pulse width modulation (PWM) amplifiers, digital and analog controllers, I/O cards, signal conditioner cards, and 16-bit A/D and D/A boards. An Intel Pentium IV industrial computer is used as the central controller. The control software is implemented using VC++ programming language. The trajectory tracking performance of all six joints is tested at varying velocities. Experimental results show that it is feasible to implement the suggested open architecture platform for PUMA 500 series robots through the software routines running on a PC. By assembling controller from off-the-shell hardware and software components, the benefits of reduced and improved robustness have been realized.展开更多
In modern manufacturing equipment control area,controller is required to deliver higher computing capability for adopting advanced algorithms to meet speed and accuracy requirements,and reconfigurabilities for changin...In modern manufacturing equipment control area,controller is required to deliver higher computing capability for adopting advanced algorithms to meet speed and accuracy requirements,and reconfigurabilities for changing or(and)adding features or functions.This paper presents a methodology in design and implementation of a high performance and reconfigurable platform for manufacturing equipment control.This methodology is in virtue of system on a programmable chip(SoPC)technolo- gy but replacing the on-chip processor by an external high performance,floating-point digital signal processor(DSP).The appli- cation of the DSP is designed as a multi-threaded framework,which has more flexibilities than a traditional single-loop one.Fur- thermore,the field programmable gate array(FPGA)system can be reconfigured easily and quickly to meet a new requirement by dragging and dropping pre-built components in a SoPC building environment.As a result,the controller platform is more recon- figurable in terms of algorithms and functions.This platform is implemented in a 3-axis milling machine control and the result indicates that the design and implementation presented in this paper is feasible.展开更多
Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing ...Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing assets.This article builds upon the Industry 4.0 concept to improve the efficiency of manufacturing systems.The major contribution is a framework for continuous monitoring and feedback-based control in the friction stir welding(FSW)process.It consists of a CNC manufacturing machine,sensors,edge,cloud systems,and deep neural networks,all working cohesively in real time.The edge device,located near the FSW machine,consists of a neural network that receives sensory information and predicts weld quality in real time.It addresses time-critical manufacturing decisions.Cloud receives the sensory data if weld quality is poor,and a second neural network predicts the new set of welding parameters that are sent as feedback to the welding machine.Several experiments are conducted for training the neural networks.The framework successfully tracks process quality and improves the welding by controlling it in real time.The system enables faster monitoring and control achieved in less than 1 s.The framework is validated through several experiments.展开更多
数控车削实训可以提升学生的实践动手能力,激发学生的实践创新能力。由于数控车削实训涉及教学内容较多,且要求学生独立操作数控设备,具有一定的安全隐患。该文通过分析传统教学安全措施,并梳理数控车削常见安全隐患及其发生原因,结合...数控车削实训可以提升学生的实践动手能力,激发学生的实践创新能力。由于数控车削实训涉及教学内容较多,且要求学生独立操作数控设备,具有一定的安全隐患。该文通过分析传统教学安全措施,并梳理数控车削常见安全隐患及其发生原因,结合数控车削实训实际情况,提出了基于可编程机床控制器(production material control, PMC)控制的数控车削实训安全防护装置。使用数控机床自带的PMC实时监控实训工量器具,设置一定的逻辑关系控制主轴的启动,以实现安全防护目的;通过“指纹授权+逻辑关系”协助实训指导教师进行管理,达到规范管理目的。实践证明:该安全防护装置能有效减少实训安全事故的发生,提升学生职业素养,降低实训指导教师的劳动强度。展开更多
文摘An innovation is conducted on a K190πK rail auto welding machine because of its poor stability in quality of welding joints. A new control system based on a programmable controller is designed to replace the old one. The new control system is of higher accuracy in controlling sequence and good ability in anti disturbance, and is convenient to operate. The comparison tests are carried out. The experimental results show that the quality of welded joints is greatly increased by the improved welding mechine.
基金The project supported by National Natural Science Foundation of China (No. 10175022) and Sichuan Provincial Youth Foundation
文摘The Ethernet and field-bus communications are used in the machine control system (MCS) of HL-2A. The control net, with a programmable logic controller (PLC) as its logic control master, an engineering control management station as its net server, and a timing control PC connected to a number of terminals, flexibly and freely transfers information among the nodes on it with the Ethernet transmission techniques. The PLC masters the field bus, which carries small pieces of information between PLC and the field sites reliably and quickly. The control net is connected into the data net, where Internet access and sharing of more experimental data are enabled. The communication in the MCS guarantees the digitalization, automation and centralization. Also provided are a satisfactory degree of safety, reliability, stability, expandability and flexibility for maintenance.
文摘The pipeline all-position automatic welding machine system is a special welding system for automatically welding circumferential joint of pipeline on site, which has been widely used to the long-distance pipeline construction projects due to the advantages of automatic control for welding parameters at all-position, moving speed of bugs and operating. In this paper, the key control technologies of PAWM all-position automatic welding machine ( developed by Pipeline Research Institute of CNPC) such us the automatic control system, control software, personal digital assistant (PDA) software and complex programmable logic device ( CPLD ) program as well us the control method of welding parameter have been described detailedly. With the higher welding quality, higher welding effwiency and lower labor intensity, PA WM all-position automatic welding machine has been successfully applied in many famous pipeline construction projects.
文摘This paper describes the replacement of a controller for a programmable universal machine for assembly (PUMA) 512 robot with a newly designed PC based (open architecture) controller employing a real-time direct control of six joints. The original structure of the PUMA robot is retained. The hardware of the new controller includes such in-house designed parts as pulse width modulation (PWM) amplifiers, digital and analog controllers, I/O cards, signal conditioner cards, and 16-bit A/D and D/A boards. An Intel Pentium IV industrial computer is used as the central controller. The control software is implemented using VC++ programming language. The trajectory tracking performance of all six joints is tested at varying velocities. Experimental results show that it is feasible to implement the suggested open architecture platform for PUMA 500 series robots through the software routines running on a PC. By assembling controller from off-the-shell hardware and software components, the benefits of reduced and improved robustness have been realized.
基金Supported by the Foundation:Guangdong Provincial Science and Technology Committee under Grant No.2002C1020407.
文摘In modern manufacturing equipment control area,controller is required to deliver higher computing capability for adopting advanced algorithms to meet speed and accuracy requirements,and reconfigurabilities for changing or(and)adding features or functions.This paper presents a methodology in design and implementation of a high performance and reconfigurable platform for manufacturing equipment control.This methodology is in virtue of system on a programmable chip(SoPC)technolo- gy but replacing the on-chip processor by an external high performance,floating-point digital signal processor(DSP).The appli- cation of the DSP is designed as a multi-threaded framework,which has more flexibilities than a traditional single-loop one.Fur- thermore,the field programmable gate array(FPGA)system can be reconfigured easily and quickly to meet a new requirement by dragging and dropping pre-built components in a SoPC building environment.As a result,the controller platform is more recon- figurable in terms of algorithms and functions.This platform is implemented in a 3-axis milling machine control and the result indicates that the design and implementation presented in this paper is feasible.
文摘Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing assets.This article builds upon the Industry 4.0 concept to improve the efficiency of manufacturing systems.The major contribution is a framework for continuous monitoring and feedback-based control in the friction stir welding(FSW)process.It consists of a CNC manufacturing machine,sensors,edge,cloud systems,and deep neural networks,all working cohesively in real time.The edge device,located near the FSW machine,consists of a neural network that receives sensory information and predicts weld quality in real time.It addresses time-critical manufacturing decisions.Cloud receives the sensory data if weld quality is poor,and a second neural network predicts the new set of welding parameters that are sent as feedback to the welding machine.Several experiments are conducted for training the neural networks.The framework successfully tracks process quality and improves the welding by controlling it in real time.The system enables faster monitoring and control achieved in less than 1 s.The framework is validated through several experiments.
文摘数控车削实训可以提升学生的实践动手能力,激发学生的实践创新能力。由于数控车削实训涉及教学内容较多,且要求学生独立操作数控设备,具有一定的安全隐患。该文通过分析传统教学安全措施,并梳理数控车削常见安全隐患及其发生原因,结合数控车削实训实际情况,提出了基于可编程机床控制器(production material control, PMC)控制的数控车削实训安全防护装置。使用数控机床自带的PMC实时监控实训工量器具,设置一定的逻辑关系控制主轴的启动,以实现安全防护目的;通过“指纹授权+逻辑关系”协助实训指导教师进行管理,达到规范管理目的。实践证明:该安全防护装置能有效减少实训安全事故的发生,提升学生职业素养,降低实训指导教师的劳动强度。