This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rul...This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rules is studied. Several new sufficient criteria of delay-dependent stability are obtained by means of the argument principle. An algorithm is provided to check delay-dependent stability. An example that illustrates the effectiveness of the derived theoretical results is given.展开更多
The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was a...The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable.展开更多
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equ...The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equation is discretized by a mixed finite element method. The electron and hole density equations are treated by implicit-explicit multistep finite element methods. The schemes are very efficient. The optimal order error estimates both in time and space are derived.展开更多
This paper deals with the stability analysis of the linear multistep (LM) methods in the numerical solution of delay differential equations. Here we provide a qualitative stability estimates, pertiment to the classica...This paper deals with the stability analysis of the linear multistep (LM) methods in the numerical solution of delay differential equations. Here we provide a qualitative stability estimates, pertiment to the classical scalar test problem of the form y′(t)=λy(t)+μy(t-τ) with τ>0 and λ,μ are complex, by using (vartiant to) the resolvent condition of Kreiss. We prove that for A stable LM methods the upper bound for the norm of the n th power of square matrix grows linearly with the order of the matrix.展开更多
Studies the numerical stability region of linear multistep(LM) methods applied to linear test equation of the form y′(t)=ay(t)+by(t-1), t>0, y(t)=g(t)-1≤t≤0, a,b∈R, proves through delay dependent stability ...Studies the numerical stability region of linear multistep(LM) methods applied to linear test equation of the form y′(t)=ay(t)+by(t-1), t>0, y(t)=g(t)-1≤t≤0, a,b∈R, proves through delay dependent stability analysis that the intersection of stability regions of the equation and the method is not empty, in addition to approaches to the boundary of the delay differential equation(DDEs) in the limiting case of step size boundary of the stability region of linear multistep methods.展开更多
A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta met...A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods.展开更多
Forced and damped oscillators appear in the mathematical modelling of many problems in pure and applied sciences such as physics, engineering and celestial mechanics among others. Although the accuracy of the T-functi...Forced and damped oscillators appear in the mathematical modelling of many problems in pure and applied sciences such as physics, engineering and celestial mechanics among others. Although the accuracy of the T-functions series method is high, the calculus of their coefficients needs specific recurrences in each case. To avoid this inconvenience, the T-functions series method is transformed into a multistep method whose coefficients are calculated using recurrence procedures. These methods are convergent and have the same properties to the T-functions series method. Numerical examples already used by other authors are presented, such as a stiff problem, a Duffing oscillator and an equatorial satellite problem when the perturbation comes from zonal harmonics J2.展开更多
We consider the construction of semi-implicit linear multistep methods that can be applied to time-dependent PDEs where the separation of scales in additive form,typically used in implicit-explicit(IMEX)methods,is not...We consider the construction of semi-implicit linear multistep methods that can be applied to time-dependent PDEs where the separation of scales in additive form,typically used in implicit-explicit(IMEX)methods,is not possible.As shown in Boscarino et al.(J.Sci.Comput.68:975-1001,2016)for Runge-Kutta methods,these semi-implicit techniques give a great flexibility,and allow,in many cases,the construction of simple linearly implicit schemes with no need of iterative solvers.In this work,we develop a general setting for the construction of high order semi-implicit linear multistep methods and analyze their stability properties for a prototype lineal'advection-diffusion equation and in the setting of strong stability preserving(SSP)methods.Our findings are demonstrated on several examples,including nonlinear reaction-diffusion and convection-diffusion problems.展开更多
The stability analysis of linear multistep (LM) methods is carried out under Kreiss resolvent condition when they are applied to neutral delay differential equations of the form y′(t)=ay(t)+by(t-τ)+ cy′(t- τ) y(t)...The stability analysis of linear multistep (LM) methods is carried out under Kreiss resolvent condition when they are applied to neutral delay differential equations of the form y′(t)=ay(t)+by(t-τ)+ cy′(t- τ) y(t)=g(t) -τ≤t≤0 with τ>0 and a, b and c∈, and it is proved that the ‖B n‖ is suitably bounded, where B is the companion matrix.展开更多
This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable ...This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable multistep Runge-Kutta methods with constrained grid.The finite-dimensional and infinite-dimensional dissipativity results of-algebraically stable multistep Runge-Kutta methods are obtained.展开更多
Stability and global error bounds are studied for a class of stepsize-dependent linear multistep methods for nonlinear evolution equations governed by ω-dissipative vector fields in Banach space.To break through the ...Stability and global error bounds are studied for a class of stepsize-dependent linear multistep methods for nonlinear evolution equations governed by ω-dissipative vector fields in Banach space.To break through the order barrier p≤1 of unconditionally contractive linear multistep methods for dissipative systems,strongly dissipative systems are introduced.By employing the error growth function of the methods,new contractivity and convergence results of stepsize-dependent linear multistep methods on infinite integration intervals are provided for strictly dissipative systems(ω<0)and strongly dissipative systems.Some applications of the main results to several linear multistep methods,including the trapezoidal rule,are supplied.The theoretical results are also illustrated by a set of numerical experiments.展开更多
This paper deals with the mode I crack problem of a cracked rubber sheet under plane stress condition using the delicate digital moiré technique. Through the four step phaseshifting method of automated fringe ana...This paper deals with the mode I crack problem of a cracked rubber sheet under plane stress condition using the delicate digital moiré technique. Through the four step phaseshifting method of automated fringe analysis, the displacement fields in the Cartesian coordinate system are given. By the coordinate-transform equation, the radial and circular displacement distributions in the polar coordinate system are obtained. The displacement isoline distributions and displacement vector distributions near the crack tip are discussed. The strain isoline distributions near the crack tip are also analyzed in this paper. Finally, the distribution rules for the mechanical fields near the crack tip are discussed with the sector division method.展开更多
In this paper, we solve chiral nonlinear Schrodinger equation (CNSE) numerically. Two numerical methods are derived using the explicit Runge-Kutta method of order four and the linear multistep method (Predictor-Correc...In this paper, we solve chiral nonlinear Schrodinger equation (CNSE) numerically. Two numerical methods are derived using the explicit Runge-Kutta method of order four and the linear multistep method (Predictor-Corrector method of fourth order). The resulting schemes of fourth order accuracy in spatial and temporal directions. The CNSE is non-integrable and has two kinds of soliton solutions: bright and dark soliton. The exact solutions and the conserved quantities of CNSE are used to display the efficiency and robustness of the numerical methods we derived. Interaction of two bright solitons for different parameters is also displayed.展开更多
In this paper we derived a continuous linear multistep method (LMM) with step number k = 5 through collocation and interpolation techniques using power series as basis function for approximate solution. An order nine ...In this paper we derived a continuous linear multistep method (LMM) with step number k = 5 through collocation and interpolation techniques using power series as basis function for approximate solution. An order nine p-stable scheme is developed which was used to solve the third order initial value problems in ordinary differential equation without first reducing to a system of first order equations. Taylor’s series algorithm of the same order was developed to implement our method. The result obtained compared favourably with existing methods.展开更多
电池储能是碳中和目标的有力抓手,准确估计其能量状态(state of energy,SOE)和峰值功率状态(state of power,SOP)是电池储能高效可靠运行的关键和基础。由于电池的电化学反应过程十分复杂,作为隐性状态量的SOE和SOP精确值难以获得。为此...电池储能是碳中和目标的有力抓手,准确估计其能量状态(state of energy,SOE)和峰值功率状态(state of power,SOP)是电池储能高效可靠运行的关键和基础。由于电池的电化学反应过程十分复杂,作为隐性状态量的SOE和SOP精确值难以获得。为此,本工作提出了一种基于模型SOE和SOP联合估计方法。应用Thevenin等效电路模型,采用递归最小二乘法建立了在线参数辨识算法,获得准确的模型参数。为解决恒定功率需求下的功率预测难题,提出了多步功率预测法,提高了SOP的预测精度,并结合扩展卡尔曼滤波算法,进一步提出了多状态联合估计方法。实验验证了算法的可行性,结果表明,在存在较大初始误差的情况下,所提出的方法电压、SOE最大预测误差均<2%,实现了准确的SOP预测。展开更多
基金Project supported by the National Natural Science Foundation of China(No.11471217)
文摘This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rules is studied. Several new sufficient criteria of delay-dependent stability are obtained by means of the argument principle. An algorithm is provided to check delay-dependent stability. An example that illustrates the effectiveness of the derived theoretical results is given.
文摘The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable.
文摘The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equation is discretized by a mixed finite element method. The electron and hole density equations are treated by implicit-explicit multistep finite element methods. The schemes are very efficient. The optimal order error estimates both in time and space are derived.
文摘This paper deals with the stability analysis of the linear multistep (LM) methods in the numerical solution of delay differential equations. Here we provide a qualitative stability estimates, pertiment to the classical scalar test problem of the form y′(t)=λy(t)+μy(t-τ) with τ>0 and λ,μ are complex, by using (vartiant to) the resolvent condition of Kreiss. We prove that for A stable LM methods the upper bound for the norm of the n th power of square matrix grows linearly with the order of the matrix.
文摘Studies the numerical stability region of linear multistep(LM) methods applied to linear test equation of the form y′(t)=ay(t)+by(t-1), t>0, y(t)=g(t)-1≤t≤0, a,b∈R, proves through delay dependent stability analysis that the intersection of stability regions of the equation and the method is not empty, in addition to approaches to the boundary of the delay differential equation(DDEs) in the limiting case of step size boundary of the stability region of linear multistep methods.
文摘A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods.
文摘Forced and damped oscillators appear in the mathematical modelling of many problems in pure and applied sciences such as physics, engineering and celestial mechanics among others. Although the accuracy of the T-functions series method is high, the calculus of their coefficients needs specific recurrences in each case. To avoid this inconvenience, the T-functions series method is transformed into a multistep method whose coefficients are calculated using recurrence procedures. These methods are convergent and have the same properties to the T-functions series method. Numerical examples already used by other authors are presented, such as a stiff problem, a Duffing oscillator and an equatorial satellite problem when the perturbation comes from zonal harmonics J2.
基金Open Access funding provided by Universita degli Studi di Verona.
文摘We consider the construction of semi-implicit linear multistep methods that can be applied to time-dependent PDEs where the separation of scales in additive form,typically used in implicit-explicit(IMEX)methods,is not possible.As shown in Boscarino et al.(J.Sci.Comput.68:975-1001,2016)for Runge-Kutta methods,these semi-implicit techniques give a great flexibility,and allow,in many cases,the construction of simple linearly implicit schemes with no need of iterative solvers.In this work,we develop a general setting for the construction of high order semi-implicit linear multistep methods and analyze their stability properties for a prototype lineal'advection-diffusion equation and in the setting of strong stability preserving(SSP)methods.Our findings are demonstrated on several examples,including nonlinear reaction-diffusion and convection-diffusion problems.
文摘The stability analysis of linear multistep (LM) methods is carried out under Kreiss resolvent condition when they are applied to neutral delay differential equations of the form y′(t)=ay(t)+by(t-τ)+ cy′(t- τ) y(t)=g(t) -τ≤t≤0 with τ>0 and a, b and c∈, and it is proved that the ‖B n‖ is suitably bounded, where B is the companion matrix.
基金Inner Mongolia University 2020 undergraduate teaching reform research and construction project-NDJG2094。
文摘This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable multistep Runge-Kutta methods with constrained grid.The finite-dimensional and infinite-dimensional dissipativity results of-algebraically stable multistep Runge-Kutta methods are obtained.
基金supported by the Natural Science Foundation of China(Grant Nos.12271367,11771060)by the Science and Technology Innovation Plan of Shanghai,China(Grant No.20JC1414200)sponsored by the Natural Science Foundation of Shanghai,China(Grant No.20ZR1441200).
文摘Stability and global error bounds are studied for a class of stepsize-dependent linear multistep methods for nonlinear evolution equations governed by ω-dissipative vector fields in Banach space.To break through the order barrier p≤1 of unconditionally contractive linear multistep methods for dissipative systems,strongly dissipative systems are introduced.By employing the error growth function of the methods,new contractivity and convergence results of stepsize-dependent linear multistep methods on infinite integration intervals are provided for strictly dissipative systems(ω<0)and strongly dissipative systems.Some applications of the main results to several linear multistep methods,including the trapezoidal rule,are supplied.The theoretical results are also illustrated by a set of numerical experiments.
基金Project supported by the National Natural Sciences Foundation of China (No. 10572102).
文摘This paper deals with the mode I crack problem of a cracked rubber sheet under plane stress condition using the delicate digital moiré technique. Through the four step phaseshifting method of automated fringe analysis, the displacement fields in the Cartesian coordinate system are given. By the coordinate-transform equation, the radial and circular displacement distributions in the polar coordinate system are obtained. The displacement isoline distributions and displacement vector distributions near the crack tip are discussed. The strain isoline distributions near the crack tip are also analyzed in this paper. Finally, the distribution rules for the mechanical fields near the crack tip are discussed with the sector division method.
文摘In this paper, we solve chiral nonlinear Schrodinger equation (CNSE) numerically. Two numerical methods are derived using the explicit Runge-Kutta method of order four and the linear multistep method (Predictor-Corrector method of fourth order). The resulting schemes of fourth order accuracy in spatial and temporal directions. The CNSE is non-integrable and has two kinds of soliton solutions: bright and dark soliton. The exact solutions and the conserved quantities of CNSE are used to display the efficiency and robustness of the numerical methods we derived. Interaction of two bright solitons for different parameters is also displayed.
文摘In this paper we derived a continuous linear multistep method (LMM) with step number k = 5 through collocation and interpolation techniques using power series as basis function for approximate solution. An order nine p-stable scheme is developed which was used to solve the third order initial value problems in ordinary differential equation without first reducing to a system of first order equations. Taylor’s series algorithm of the same order was developed to implement our method. The result obtained compared favourably with existing methods.
文摘电池储能是碳中和目标的有力抓手,准确估计其能量状态(state of energy,SOE)和峰值功率状态(state of power,SOP)是电池储能高效可靠运行的关键和基础。由于电池的电化学反应过程十分复杂,作为隐性状态量的SOE和SOP精确值难以获得。为此,本工作提出了一种基于模型SOE和SOP联合估计方法。应用Thevenin等效电路模型,采用递归最小二乘法建立了在线参数辨识算法,获得准确的模型参数。为解决恒定功率需求下的功率预测难题,提出了多步功率预测法,提高了SOP的预测精度,并结合扩展卡尔曼滤波算法,进一步提出了多状态联合估计方法。实验验证了算法的可行性,结果表明,在存在较大初始误差的情况下,所提出的方法电压、SOE最大预测误差均<2%,实现了准确的SOP预测。