The design of a three-input logic circuit using carbon nanotube field effect transistors(CNTFETs)is presented.Ternary logic must be an exact replacement for dual logic since it performs straightforwardly in digital de...The design of a three-input logic circuit using carbon nanotube field effect transistors(CNTFETs)is presented.Ternary logic must be an exact replacement for dual logic since it performs straightforwardly in digital devices,which is why this design is so popular,and it also reduces chip area,both of which are examples of circuit overheads.The proposed module we have investigated is a triple-logic-based one,based on advanced technology CNTFETs and an emphasis on minimizing delay times at various values,as well as comparisons of the design working with various load capacitances.Comparing the proposed design with the existing design,the delay times was reduced from 66.32 to 16.41 ps,i.e.,a 75.26%reduction.However,the power dissipation was not optimized,and increased by 1.44%compared to the existing adder.The number of transistors was also reduced,and the product of power and delay(P∗D)achieved a value of 0.0498053 fJ.An improvement at 1 V was also achieved.A load capacitance(fF)was measured at different values,and the average delay measured for different values of capacitance had a maximum of 83.60 ps and a minimum of 22.54 ps,with a range of 61.06 ps.The power dissipations ranged from a minimum of 3.38μW to a maximum of 6.49μW.Based on these results,the use of this CNTFET half-adder design in multiple Boolean circuits will be a useful addition to circuit design.展开更多
Boolean logic devices play a key role in both traditional and nontraditional molecular logic circuits. This kind of binary logic, in which each bit is coded by (0, 1), has only two output states--on or off (or high...Boolean logic devices play a key role in both traditional and nontraditional molecular logic circuits. This kind of binary logic, in which each bit is coded by (0, 1), has only two output states--on or off (or high/low). Because of the finite computing capacity and variation, it is facing challenges from multivalued logic gates while processing high-density or uncertain/imprecise information. However, a low-cost, simple, and universal system that can perform different multivalued logic computations has not yet been developed, and remains a concept for further study. Herein, taking the ternary OR and INHIBIT logic gates as model devices, we present the fabrication of a novel simple, fast, label-flee, and nanoquencher-free system for multivalued DNA logic gates using poly-thymine (T) templated copper nanoparticles (CuNPs) as signal reporters. The mixture of Cu2~ and ascorbic acid (AA) is taken as a universal platform for all ternary logic gates. Different kinds of poly-T strands and delicately designed complementary poly-adenine (A) strands are alternatively applied as ternary inputs to exhibit the ternary output states (low/0, medium/1, high/2). Notably, there are no nanoquenchers in this platform as poly-A strands can function as not only inputs but also efficient inhibitors of poly-T templated CuNPs. Moreover, all DNA are unlabeled single-strand DNA that do not need sophisticated labeling procedures or sequence design. The above design greatly reduces the operating time, costs, and complexity. More importantly, the ternary logic computations can be completed within 20 min because of the fast formation of CuNPs, and all of them share the same threshold values.展开更多
In this paper, several kinds of multivalued logic for relational database and their developing process are presented on the basis of null value's semantics. A new 5 valued logic is led into relational database con...In this paper, several kinds of multivalued logic for relational database and their developing process are presented on the basis of null value's semantics. A new 5 valued logic is led into relational database containing null talue. The feasibility and necessity of using 5 valued logic are expounded. Comparative calculation and logical calculation under 5 valued logic are defined at the end of the paper.展开更多
This paper proposes a mapping method simplifying the Reed-Muller expansion(“RM expansion”)of a ternary function under fixed polarities and the transformation of the RM expansion coefficients with different fixed pol...This paper proposes a mapping method simplifying the Reed-Muller expansion(“RM expansion”)of a ternary function under fixed polarities and the transformation of the RM expansion coefficients with different fixed polarities.展开更多
文摘The design of a three-input logic circuit using carbon nanotube field effect transistors(CNTFETs)is presented.Ternary logic must be an exact replacement for dual logic since it performs straightforwardly in digital devices,which is why this design is so popular,and it also reduces chip area,both of which are examples of circuit overheads.The proposed module we have investigated is a triple-logic-based one,based on advanced technology CNTFETs and an emphasis on minimizing delay times at various values,as well as comparisons of the design working with various load capacitances.Comparing the proposed design with the existing design,the delay times was reduced from 66.32 to 16.41 ps,i.e.,a 75.26%reduction.However,the power dissipation was not optimized,and increased by 1.44%compared to the existing adder.The number of transistors was also reduced,and the product of power and delay(P∗D)achieved a value of 0.0498053 fJ.An improvement at 1 V was also achieved.A load capacitance(fF)was measured at different values,and the average delay measured for different values of capacitance had a maximum of 83.60 ps and a minimum of 22.54 ps,with a range of 61.06 ps.The power dissipations ranged from a minimum of 3.38μW to a maximum of 6.49μW.Based on these results,the use of this CNTFET half-adder design in multiple Boolean circuits will be a useful addition to circuit design.
基金This work was supported by the National Natural Science Foundation of China (Nos. 21375123, 21427811 and 21675151).
文摘Boolean logic devices play a key role in both traditional and nontraditional molecular logic circuits. This kind of binary logic, in which each bit is coded by (0, 1), has only two output states--on or off (or high/low). Because of the finite computing capacity and variation, it is facing challenges from multivalued logic gates while processing high-density or uncertain/imprecise information. However, a low-cost, simple, and universal system that can perform different multivalued logic computations has not yet been developed, and remains a concept for further study. Herein, taking the ternary OR and INHIBIT logic gates as model devices, we present the fabrication of a novel simple, fast, label-flee, and nanoquencher-free system for multivalued DNA logic gates using poly-thymine (T) templated copper nanoparticles (CuNPs) as signal reporters. The mixture of Cu2~ and ascorbic acid (AA) is taken as a universal platform for all ternary logic gates. Different kinds of poly-T strands and delicately designed complementary poly-adenine (A) strands are alternatively applied as ternary inputs to exhibit the ternary output states (low/0, medium/1, high/2). Notably, there are no nanoquenchers in this platform as poly-A strands can function as not only inputs but also efficient inhibitors of poly-T templated CuNPs. Moreover, all DNA are unlabeled single-strand DNA that do not need sophisticated labeling procedures or sequence design. The above design greatly reduces the operating time, costs, and complexity. More importantly, the ternary logic computations can be completed within 20 min because of the fast formation of CuNPs, and all of them share the same threshold values.
文摘In this paper, several kinds of multivalued logic for relational database and their developing process are presented on the basis of null value's semantics. A new 5 valued logic is led into relational database containing null talue. The feasibility and necessity of using 5 valued logic are expounded. Comparative calculation and logical calculation under 5 valued logic are defined at the end of the paper.
文摘This paper proposes a mapping method simplifying the Reed-Muller expansion(“RM expansion”)of a ternary function under fixed polarities and the transformation of the RM expansion coefficients with different fixed polarities.