Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problem...Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problems. The results about fractional derivative multivariable grey models are very few at present. In this paper, a multivariable Caputo fractional derivative grey model with convolution integral CFGMC(q, N) is proposed. First, the Caputo fractional difference is used to discretize the model, and the least square method is used to solve the parameters. The orders of accumulations and differential equations are determined by using particle swarm optimization(PSO). Then, the analytical solution of the model is obtained by using the Laplace transform, and the convergence and divergence of series in analytical solutions are also discussed. Finally, the CFGMC(q, N) model is used to predict the municipal solid waste(MSW). Compared with other competition models, the model has the best prediction effect. This study enriches the model form of the multivariable grey model, expands the scope of application, and provides a new idea for the development of fractional derivative grey model.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
In this paper,we set up a grey multivtriable model to predict the HFRS morbidity.Forecasting test results show that this new model is of general use in the prediction Of the disease.It is particularly appropriate for ...In this paper,we set up a grey multivtriable model to predict the HFRS morbidity.Forecasting test results show that this new model is of general use in the prediction Of the disease.It is particularly appropriate for HFRS investigations and controls.展开更多
The MGM(1,m,N)model is an effective grey multi-variate forecasting model that considers multiple system characteristic sequences affected by multiplefactors.Nevertheless,it isregularly inaccurate in the application Th...The MGM(1,m,N)model is an effective grey multi-variate forecasting model that considers multiple system characteristic sequences affected by multiplefactors.Nevertheless,it isregularly inaccurate in the application This is because the model requires a strong correlation between the system characteristic sequences That reduces the applicability of the model.To solve this problem,this paper proposes a novel multi-variate grey model.This model does not require a certain correlation between system characteristic sequences and has higher applicability Through numerical integration,a two-point trapezoidal formula,and a recursive method,thetime-response expressions ofthetwo model forms are obtained Some properties of the proposed model are further discussed Finally,the validity of the proposed model is evaluated by using two real cases related to China's invention patent development.Theresultsshow that the novel models outperformother models inbothsimulation and prediction applications.展开更多
基金supported by the National Natural Science Foundation of China (51479151,61403288)。
文摘Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problems. The results about fractional derivative multivariable grey models are very few at present. In this paper, a multivariable Caputo fractional derivative grey model with convolution integral CFGMC(q, N) is proposed. First, the Caputo fractional difference is used to discretize the model, and the least square method is used to solve the parameters. The orders of accumulations and differential equations are determined by using particle swarm optimization(PSO). Then, the analytical solution of the model is obtained by using the Laplace transform, and the convergence and divergence of series in analytical solutions are also discussed. Finally, the CFGMC(q, N) model is used to predict the municipal solid waste(MSW). Compared with other competition models, the model has the best prediction effect. This study enriches the model form of the multivariable grey model, expands the scope of application, and provides a new idea for the development of fractional derivative grey model.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
文摘In this paper,we set up a grey multivtriable model to predict the HFRS morbidity.Forecasting test results show that this new model is of general use in the prediction Of the disease.It is particularly appropriate for HFRS investigations and controls.
基金Supported bythe National Natural Science Foundation of China(71701105)the Major Program of the National Social Science Fund of China(17ZDA092)+1 种基金the Key Research Project of Philosophy and Social Sciences in Universities of Jiangsu Province(2018SJZDI111)Key Projects of Open Topics of Jiangsu Productivity Society in2020(JSSCL2020A004)。
文摘The MGM(1,m,N)model is an effective grey multi-variate forecasting model that considers multiple system characteristic sequences affected by multiplefactors.Nevertheless,it isregularly inaccurate in the application This is because the model requires a strong correlation between the system characteristic sequences That reduces the applicability of the model.To solve this problem,this paper proposes a novel multi-variate grey model.This model does not require a certain correlation between system characteristic sequences and has higher applicability Through numerical integration,a two-point trapezoidal formula,and a recursive method,thetime-response expressions ofthetwo model forms are obtained Some properties of the proposed model are further discussed Finally,the validity of the proposed model is evaluated by using two real cases related to China's invention patent development.Theresultsshow that the novel models outperformother models inbothsimulation and prediction applications.