In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A...In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.展开更多
In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)da...In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)datasets?This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things(IoT)devices,which can significantly improve the reliability and safety of these systems.In this paper,we propose a hybrid autoencoder model,called ConvBiLSTMAE,which combines convolutional neural network(CNN)and bidirectional long short-term memory(BiLSTM)to more effectively train complex temporal data patterns in anomaly detection.On the hardware-in-the-loopbased extended industrial control system dataset,the ConvBiLSTM-AE model demonstrated remarkable anomaly detection performance,achieving F1 scores of 0.78 and 0.41 for the first and second datasets,respectively.The results suggest that hybrid autoencoder models are not only viable,but potentially superior alternatives for unsupervised anomaly detection in complex industrial systems,offering a promising approach to improving their reliability and safety.展开更多
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an...The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.展开更多
The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic tim...The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic time series including local mean prediction, local linear prediction and BP neural networks prediction are considered. The simulation results obtained by the Lorenz system show that no matter what nonlinear prediction method is used, the prediction error of multivariate chaotic time series is much smaller than the prediction error of univariate time series, even if half of the data of univariate time series are used in multivariate time series. The results also verify that methods to determine the time delays and the embedding dimensions are correct from the view of minimizing the prediction error.展开更多
Classification models for multivariate time series have drawn the interest of many researchers to the field with the objective of developing accurate and efficient models.However,limited research has been conducted on...Classification models for multivariate time series have drawn the interest of many researchers to the field with the objective of developing accurate and efficient models.However,limited research has been conducted on generating adversarial samples for multivariate time series classification models.Adversarial samples could become a security concern in systems with complex sets of sensors.This study proposes extending the existing gradient adversarial transformation network(GATN)in combination with adversarial autoencoders to attack multivariate time series classification models.The proposed model attacks classification models by utilizing a distilled model to imitate the output of the multivariate time series classification model.In addition,the adversarial generator function is replaced with a variational autoencoder to enhance the adversarial samples.The developed methodology is tested on two multivariate time series classification models:1-nearest neighbor dynamic time warping(1-NN DTW)and a fully convolutional network(FCN).This study utilizes 30 multivariate time series benchmarks provided by the University of East Anglia(UEA)and University of California Riverside(UCR).The use of adversarial autoencoders shows an increase in the fraction of successful adversaries generated on multivariate time series.To the best of our knowledge,this is the first study to explore adversarial attacks on multivariate time series.Additionally,we recommend future research utilizing the generated latent space from the variational autoencoders.展开更多
Time series is a kind of data widely used in various fields such as electricity forecasting,exchange rate forecasting,and solar power generation forecasting,and therefore time series prediction is of great significanc...Time series is a kind of data widely used in various fields such as electricity forecasting,exchange rate forecasting,and solar power generation forecasting,and therefore time series prediction is of great significance.Recently,the encoder-decoder model combined with long short-term memory(LSTM)is widely used for multivariate time series prediction.However,the encoder can only encode information into fixed-length vectors,hence the performance of the model decreases rapidly as the length of the input sequence or output sequence increases.To solve this problem,we propose a combination model named AR_CLSTM based on the encoder_decoder structure and linear autoregression.The model uses a time step-based attention mechanism to enable the decoder to adaptively select past hidden states and extract useful information,and then uses convolution structure to learn the internal relationship between different dimensions of multivariate time series.In addition,AR_CLSTM combines the traditional linear autoregressive method to learn the linear relationship of the time series,so as to further reduce the error of time series prediction in the encoder_decoder structure and improve the multivariate time series Predictive effect.Experiments show that the AR_CLSTM model performs well in different time series predictions,and its root mean square error,mean square error,and average absolute error all decrease significantly.展开更多
In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate tim...In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology.Then,the original decision-table of rough set theory was set up according to the embedding dimensions and time-delays of the original reconstruction phase space,and the rough set reduction was used to delete the redundant dimensions and irrelevant variables and to reconstruct the generic phase space,Finally,the input vectors for the prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of prediction model.Verification results show that the developed reconstruction method leads to better generalization ability for the prediction model and it is feasible and worthwhile for application.展开更多
Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and m...Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and malfunctions.However,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is unknown.Therefore,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between indicators.Accordingly,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)framework.To avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained anomaly.Based on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal indicators.Extensive simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection.展开更多
Some reconstruction-based anomaly detection models in multivariate time series have brought impressive performance advancements but suffer from weak generalization ability and a lack of anomaly identification.These li...Some reconstruction-based anomaly detection models in multivariate time series have brought impressive performance advancements but suffer from weak generalization ability and a lack of anomaly identification.These limitations can result in the misjudgment of models,leading to a degradation in overall detection performance.This paper proposes a novel transformer-like anomaly detection model adopting a contrastive learning module and a memory block(CLME)to overcome the above limitations.The contrastive learning module tailored for time series data can learn the contextual relationships to generate temporal fine-grained representations.The memory block can record normal patterns of these representations through the utilization of attention-based addressing and reintegration mechanisms.These two modules together effectively alleviate the problem of generalization.Furthermore,this paper introduces a fusion anomaly detection strategy that comprehensively takes into account the residual and feature spaces.Such a strategy can enlarge the discrepancies between normal and abnormal data,which is more conducive to anomaly identification.The proposed CLME model not only efficiently enhances the generalization performance but also improves the ability of anomaly detection.To validate the efficacy of the proposed approach,extensive experiments are conducted on well-established benchmark datasets,including SWaT,PSM,WADI,and MSL.The results demonstrate outstanding performance,with F1 scores of 90.58%,94.83%,91.58%,and 91.75%,respectively.These findings affirm the superiority of the CLME model over existing stateof-the-art anomaly detection methodologies in terms of its ability to detect anomalies within complex datasets accurately.展开更多
In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many me...In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many methods in time ser-ies prediction and deep learning models to estimate the severity of air pollution.Each independent variable contributing towards pollution is necessary to analyse the trend behind the air pollution in that particular locality.This approach selects multivariate time series and coalesce a real time updatable autoregressive model to forecast Particulate matter(PM)PM2.5.To perform experimental analysis the data from the Central Pollution Control Board(CPCB)is used.Prediction is car-ried out for Chennai with seven locations and estimated PM’s using the weighted ensemble method.Proposed method for air pollution prediction unveiled effective and moored performance in long term prediction.Dynamic budge with high weighted k-models are used simultaneously and devising an ensemble helps to achieve stable forecasting.Computational time of ensemble decreases with paral-lel processing in each sub model.Weighted ensemble model shows high perfor-mance in long term prediction when compared to the traditional time series models like Vector Auto-Regression(VAR),Autoregressive Integrated with Mov-ing Average(ARIMA),Autoregressive Moving Average with Extended terms(ARMEX).Evaluation metrics like Root Mean Square Error(RMSE),Mean Absolute Error(MAE)and the time to achieve the time series are compared.展开更多
A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out....A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out.This method first uses MTS analysis to optimize injection and production data on the basis of well pattern analysis.The oil production of different production wells and water injection of injection wells in the well group are regarded as mutually related time series.Then a VAR model is established to mine the linear relationship from MTS data and forecast the oil well production by model fitting.The analysis of history production data of waterflooding reservoirs shows that,compared with history matching results of numerical reservoir simulation,the production forecasting results from the machine learning model are more accurate,and uncertainty analysis can improve the safety of forecasting results.Furthermore,impulse response analysis can evaluate the oil production contribution of the injection well,which can provide theoretical guidance for adjustment of waterflooding development plan.展开更多
Mortality time series display time-varying volatility. The utility of statistical estimators from the financial time-series paradigm, which account for this characteristic, has not been addressed for high-frequency mo...Mortality time series display time-varying volatility. The utility of statistical estimators from the financial time-series paradigm, which account for this characteristic, has not been addressed for high-frequency mortality series. Using daily mean-mortality series of an exemplar intensive care unit (ICU) from the Australian and New Zealand Intensive Care Society adult patient database, joint estimation of a mean and conditional variance (volatility) model for a stationary series was undertaken via univariate autoregressive moving average (ARMA, lags (p, q)), GARCH (Generalised Autoregressive Conditional Heteroscedasticity, lags (p, q)). The temporal dynamics of the conditional variance and correlations of multiple provider series, from rural/ regional, metropolitan, tertiary and private ICUs, were estimated utilising multivariate GARCH models. For the stationary first differenced series, an asymmetric power GARCH model (lags (1, 1)) with t distribution (degrees-of- freedom, 11.6) and ARMA (7,0) for the mean-model, was the best-fitting. The four multivariate component series demonstrated varying trend mortality decline and persistent autocorrelation. Within each MGARCH series no model specification dominated. The conditional correlations were surprisingly low (<0.1) between tertiary series and substantial (0.4 - 0.6) between rural-regional and private series. The conditional-variances of both the univariate and multivariate series demonstrated a slow rate of time decline from periods of early volatility and volatility spikes.展开更多
The existing pattern matching methods of multivariate time series can hardly measure the similarity of multivariate hydrological time series accurately and efficiently.Considering the characteristics of multivariate h...The existing pattern matching methods of multivariate time series can hardly measure the similarity of multivariate hydrological time series accurately and efficiently.Considering the characteristics of multivariate hydrological time series,the continuity and global features of variables,we proposed a pattern matching method,PP-DTW,which is based on dynamic time warping.In this method,the multivariate time series is firstly segmented,and the average of each segment is used as the feature.Then,PCA is operated on the feature sequence.Finally,the weighted DTW distance is used as the measure of similarity in sequences.Carrying out experiments on the hydrological data of Chu River,we conclude that the pattern matching method can effectively describe the overall characteristics of the multivariate time series,which has a good matching effect on the multivariate hydrological time series.展开更多
Periodicity is common in natural processes, however, extraction tools are typically difficult and cumbersome to use. Here we report a computational method developed in MATLAB through a function called Periods with the...Periodicity is common in natural processes, however, extraction tools are typically difficult and cumbersome to use. Here we report a computational method developed in MATLAB through a function called Periods with the aim to find the main harmonic components of time series data. This function is designed to obtain the period, amplitude and lag phase of the main harmonic components in a time series (Periods and lag phase components can be related to climate, social or economic events). It is based on methods of periodic regression with cyclic descent and includes statistical significance testing. The proposed method is very easy to use. Furthermore, it does not require full understanding of time series theory, nor require many inputs from the user. However, it is sufficiently flexible to undertake more complex tasks such as forecasting. Additionally, based on previous knowledge, specific periods can be included or excluded easily. The output results are organized into two groups. One contains the parameters of the adjusted model and their F statistics. The other consists of the harmonic parameters that best fit the original series according to their importance and the summarized statistics of the comparisons between successive models in the cyclic descent process. Periods is tested with both, simulated and actual sunspot and Multivariate ENSO Index data to show its performance and accuracy.展开更多
Long-term multivariate time series forecasting is an important task in engineering applications. It helps grasp the future development trend of data in real-time, which is of great significance for a wide variety of f...Long-term multivariate time series forecasting is an important task in engineering applications. It helps grasp the future development trend of data in real-time, which is of great significance for a wide variety of fields. Due to the non-linear and unstable characteristics of multivariate time series, the existing methods encounter difficulties in analyzing complex high-dimensional data and capturing latent relationships between multivariates in time series, thus affecting the performance of long-term prediction. In this paper, we propose a novel time series forecasting model based on multilayer perceptron that combines spatio-temporal decomposition and doubly residual stacking, namely Spatio-Temporal Decomposition Neural Network (STDNet). We decompose the originally complex and unstable time series into two parts, temporal term and spatial term. We design temporal module based on auto-correlation mechanism to discover temporal dependencies at the sub-series level, and spatial module based on convolutional neural network and self-attention mechanism to integrate multivariate information from two dimensions, global and local, respectively. Then we integrate the results obtained from the different modules to get the final forecast. Extensive experiments on four real-world datasets show that STDNet significantly outperforms other state-of-the-art methods, which provides an effective solution for long-term time series forecasting.展开更多
The analysis result of absolute degree of grey incidence for multivariate time series is often inconsistent with the qualitative analysis. To overcome this shortage, a multivariate absolute degree of grey incidence ba...The analysis result of absolute degree of grey incidence for multivariate time series is often inconsistent with the qualitative analysis. To overcome this shortage, a multivariate absolute degree of grey incidence based on distribution characteristics of points is proposed. Based on the geometric description of multivariate time se- ries, the neighborhood extrema are extracted in the different regions, and a characteristic point set is constructed. Then according to the distribution of the characteristic point set, a characteristic point sequence reflecting the ge- ometric features of multivariate time series is obtained. The incidence analysis between multivariate time series is transformed into the relational analysis between characteristic point sequences, and a grey incidence model is established. The model possesses the properties of translational invariance, transpose and rank transform invari- ance, and satisfies the grey incidence analysis axioms. Finally, two cases are studied and the results prove the ef- fectiveness of the model.展开更多
In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of ...In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of multivariate time series on different scales are pooled and aggregated by spatial pyramid pooling to construct n levels feature pooling matrices on the same scale. Secondly,Deng's multivariate grey incidence model is introduced to measure the degree of incidence between feature pooling matrices at each level. Thirdly, grey incidence degrees at each level are integrated into a global incidence degree. Finally, the performance of the proposed model is verified on two data sets compared with a variety of algorithms. The results illustrate that the proposed model is more effective and efficient than other similarity measure algorithms.展开更多
An information theory method is proposed to test the. Granger causality and contemporaneous conditional independence in Granger causality graph models. In the graphs, the vertex set denotes the component series of the...An information theory method is proposed to test the. Granger causality and contemporaneous conditional independence in Granger causality graph models. In the graphs, the vertex set denotes the component series of the multivariate time series, and the directed edges denote causal dependence, while the undirected edges reflect the instantaneous dependence. The presence of the edges is measured by a statistics based on conditional mutual information and tested by a permutation procedure. Furthermore, for the existed relations, a statistics based on the difference between general conditional mutual information and linear conditional mutual information is proposed to test the nonlinearity. The significance of the nonlinear test statistics is determined by a bootstrap method based on surrogate data. We investigate the finite sample behavior of the procedure through simulation time series with different dependence structures, including linear and nonlinear relations.展开更多
We introduce a concept of episode referring to a time interval in the development of a dynamic phenomenon that is characterized by multiple time-variant attributes.A data structure representing a single episode is a m...We introduce a concept of episode referring to a time interval in the development of a dynamic phenomenon that is characterized by multiple time-variant attributes.A data structure representing a single episode is a multivariate time series.To analyse collections of episodes,we propose an approach that is based on recognition of particular patterns in the temporal variation of the variables within episodes.Each episode is thus represented by a combination of patterns.Using this representation,we apply visual analytics techniques to fulfil a set of analysis tasks,such as investigation of the temporal distribution of the patterns,frequencies of transitions between the patterns in episode sequences,and co-occurrences of patterns of different variables within same episodes.We demonstrate our approach on two examples using real-world data,namely,dynamics of human mobility indicators during the COVID-19 pandemic and characteristics of football team movements during episodes of ball turnover.展开更多
Wind power is one of the fastest-growing renewable energy sectors instrumental in the ongoing decarbonizationprocess. However, wind turbines are subjected to a wide range of dynamic loads which can cause more frequent...Wind power is one of the fastest-growing renewable energy sectors instrumental in the ongoing decarbonizationprocess. However, wind turbines are subjected to a wide range of dynamic loads which can cause more frequentfailures and downtime periods, leading to ever-increasing attention to effective Condition Monitoring strategies.In this paper, we propose a novel unsupervised deep anomaly detection framework to detect anomalies in windturbines based on SCADA data. We introduce a promising neural architecture, namely a Graph ConvolutionalAutoencoder for Multivariate Time series, to model the sensor network as a dynamical functional graph. Thisstructure improves the unsupervised learning capabilities of Autoencoders by considering individual sensormeasurements together with the nonlinear correlations existing among signals. On this basis, we developeda deep anomaly detection framework that was validated on 12 failure events occurred during 20 months ofoperation of four wind turbines. The results show that the proposed framework successfully detects anomaliesand anticipates SCADA alarms by outperforming other two recent neural approaches.展开更多
基金This work is partly supported by the National Key Research and Development Program of China(Grant No.2020YFB1805403)the National Natural Science Foundation of China(Grant No.62032002)the 111 Project(Grant No.B21049).
文摘In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.
基金supported by the Culture,Sports,and Tourism R&D Program through the Korea Creative Content Agency grant funded by the Ministry of Culture,Sports,and Tourism in 2024(Project Name:Development of Distribution and Management Platform Technology and Human Resource Development for Blockchain-Based SW Copyright Protection,Project Number:RS-2023-00228867,Contribution Rate:100%)and also supported by the Soonchunhyang University Research Fund.
文摘In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)datasets?This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things(IoT)devices,which can significantly improve the reliability and safety of these systems.In this paper,we propose a hybrid autoencoder model,called ConvBiLSTMAE,which combines convolutional neural network(CNN)and bidirectional long short-term memory(BiLSTM)to more effectively train complex temporal data patterns in anomaly detection.On the hardware-in-the-loopbased extended industrial control system dataset,the ConvBiLSTM-AE model demonstrated remarkable anomaly detection performance,achieving F1 scores of 0.78 and 0.41 for the first and second datasets,respectively.The results suggest that hybrid autoencoder models are not only viable,but potentially superior alternatives for unsupervised anomaly detection in complex industrial systems,offering a promising approach to improving their reliability and safety.
基金supported by the China Scholarship Council and the CERNET Innovation Project under grant No.20170111.
文摘The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.
文摘The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic time series including local mean prediction, local linear prediction and BP neural networks prediction are considered. The simulation results obtained by the Lorenz system show that no matter what nonlinear prediction method is used, the prediction error of multivariate chaotic time series is much smaller than the prediction error of univariate time series, even if half of the data of univariate time series are used in multivariate time series. The results also verify that methods to determine the time delays and the embedding dimensions are correct from the view of minimizing the prediction error.
文摘Classification models for multivariate time series have drawn the interest of many researchers to the field with the objective of developing accurate and efficient models.However,limited research has been conducted on generating adversarial samples for multivariate time series classification models.Adversarial samples could become a security concern in systems with complex sets of sensors.This study proposes extending the existing gradient adversarial transformation network(GATN)in combination with adversarial autoencoders to attack multivariate time series classification models.The proposed model attacks classification models by utilizing a distilled model to imitate the output of the multivariate time series classification model.In addition,the adversarial generator function is replaced with a variational autoencoder to enhance the adversarial samples.The developed methodology is tested on two multivariate time series classification models:1-nearest neighbor dynamic time warping(1-NN DTW)and a fully convolutional network(FCN).This study utilizes 30 multivariate time series benchmarks provided by the University of East Anglia(UEA)and University of California Riverside(UCR).The use of adversarial autoencoders shows an increase in the fraction of successful adversaries generated on multivariate time series.To the best of our knowledge,this is the first study to explore adversarial attacks on multivariate time series.Additionally,we recommend future research utilizing the generated latent space from the variational autoencoders.
基金Shanxi Provincial Key Research and Development Program Project Fund(No.201703D111011)。
文摘Time series is a kind of data widely used in various fields such as electricity forecasting,exchange rate forecasting,and solar power generation forecasting,and therefore time series prediction is of great significance.Recently,the encoder-decoder model combined with long short-term memory(LSTM)is widely used for multivariate time series prediction.However,the encoder can only encode information into fixed-length vectors,hence the performance of the model decreases rapidly as the length of the input sequence or output sequence increases.To solve this problem,we propose a combination model named AR_CLSTM based on the encoder_decoder structure and linear autoregression.The model uses a time step-based attention mechanism to enable the decoder to adaptively select past hidden states and extract useful information,and then uses convolution structure to learn the internal relationship between different dimensions of multivariate time series.In addition,AR_CLSTM combines the traditional linear autoregressive method to learn the linear relationship of the time series,so as to further reduce the error of time series prediction in the encoder_decoder structure and improve the multivariate time series Predictive effect.Experiments show that the AR_CLSTM model performs well in different time series predictions,and its root mean square error,mean square error,and average absolute error all decrease significantly.
基金Project(61025015) supported by the National Natural Science Funds for Distinguished Young Scholars of ChinaProject(21106036) supported by the National Natural Science Foundation of China+2 种基金Project(200805331103) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject(NCET-08-0576) supported by Program for New Century Excellent Talents in Universities of ChinaProject(11B038) supported by Scientific Research Fund for the Excellent Youth Scholars of Hunan Provincial Education Department,China
文摘In order to effectively analyse the multivariate time series data of complex process,a generic reconstruction technology based on reduction theory of rough sets was proposed,Firstly,the phase space of multivariate time series was originally reconstructed by a classical reconstruction technology.Then,the original decision-table of rough set theory was set up according to the embedding dimensions and time-delays of the original reconstruction phase space,and the rough set reduction was used to delete the redundant dimensions and irrelevant variables and to reconstruct the generic phase space,Finally,the input vectors for the prediction of multivariate time series were extracted according to generic reconstruction results to identify the parameters of prediction model.Verification results show that the developed reconstruction method leads to better generalization ability for the prediction model and it is feasible and worthwhile for application.
基金supported in part by the National Natural Science Foundation of China under Grant 62272062the Researchers Supporting Project number.(RSP2023R102)King Saud University+5 种基金Riyadh,Saudi Arabia,the Open Research Fund of the Hunan Provincial Key Laboratory of Network Investigational Technology under Grant 2018WLZC003the National Science Foundation of Hunan Province under Grant 2020JJ2029the Hunan Provincial Key Research and Development Program under Grant 2022GK2019the Science Fund for Creative Research Groups of Hunan Province under Grant 2020JJ1006the Scientific Research Fund of Hunan Provincial Transportation Department under Grant 202143the Open Fund of Key Laboratory of Safety Control of Bridge Engineering,Ministry of Education(Changsha University of Science Technology)under Grant 21KB07.
文摘Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and malfunctions.However,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is unknown.Therefore,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between indicators.Accordingly,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)framework.To avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained anomaly.Based on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal indicators.Extensive simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection.
基金support from the Major National Science and Technology Special Projects(2016ZX02301003-004-007)the Natural Science Foundation of Hebei Province(F2020202067)。
文摘Some reconstruction-based anomaly detection models in multivariate time series have brought impressive performance advancements but suffer from weak generalization ability and a lack of anomaly identification.These limitations can result in the misjudgment of models,leading to a degradation in overall detection performance.This paper proposes a novel transformer-like anomaly detection model adopting a contrastive learning module and a memory block(CLME)to overcome the above limitations.The contrastive learning module tailored for time series data can learn the contextual relationships to generate temporal fine-grained representations.The memory block can record normal patterns of these representations through the utilization of attention-based addressing and reintegration mechanisms.These two modules together effectively alleviate the problem of generalization.Furthermore,this paper introduces a fusion anomaly detection strategy that comprehensively takes into account the residual and feature spaces.Such a strategy can enlarge the discrepancies between normal and abnormal data,which is more conducive to anomaly identification.The proposed CLME model not only efficiently enhances the generalization performance but also improves the ability of anomaly detection.To validate the efficacy of the proposed approach,extensive experiments are conducted on well-established benchmark datasets,including SWaT,PSM,WADI,and MSL.The results demonstrate outstanding performance,with F1 scores of 90.58%,94.83%,91.58%,and 91.75%,respectively.These findings affirm the superiority of the CLME model over existing stateof-the-art anomaly detection methodologies in terms of its ability to detect anomalies within complex datasets accurately.
文摘In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many methods in time ser-ies prediction and deep learning models to estimate the severity of air pollution.Each independent variable contributing towards pollution is necessary to analyse the trend behind the air pollution in that particular locality.This approach selects multivariate time series and coalesce a real time updatable autoregressive model to forecast Particulate matter(PM)PM2.5.To perform experimental analysis the data from the Central Pollution Control Board(CPCB)is used.Prediction is car-ried out for Chennai with seven locations and estimated PM’s using the weighted ensemble method.Proposed method for air pollution prediction unveiled effective and moored performance in long term prediction.Dynamic budge with high weighted k-models are used simultaneously and devising an ensemble helps to achieve stable forecasting.Computational time of ensemble decreases with paral-lel processing in each sub model.Weighted ensemble model shows high perfor-mance in long term prediction when compared to the traditional time series models like Vector Auto-Regression(VAR),Autoregressive Integrated with Mov-ing Average(ARIMA),Autoregressive Moving Average with Extended terms(ARMEX).Evaluation metrics like Root Mean Square Error(RMSE),Mean Absolute Error(MAE)and the time to achieve the time series are compared.
基金Huo Yingdong Education Foundation Young Teachers Fund for Higher Education Institutions(171043)Sichuan Outstanding Young Science and Technology Talent Project(2019JDJQ0036)。
文摘A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out.This method first uses MTS analysis to optimize injection and production data on the basis of well pattern analysis.The oil production of different production wells and water injection of injection wells in the well group are regarded as mutually related time series.Then a VAR model is established to mine the linear relationship from MTS data and forecast the oil well production by model fitting.The analysis of history production data of waterflooding reservoirs shows that,compared with history matching results of numerical reservoir simulation,the production forecasting results from the machine learning model are more accurate,and uncertainty analysis can improve the safety of forecasting results.Furthermore,impulse response analysis can evaluate the oil production contribution of the injection well,which can provide theoretical guidance for adjustment of waterflooding development plan.
文摘Mortality time series display time-varying volatility. The utility of statistical estimators from the financial time-series paradigm, which account for this characteristic, has not been addressed for high-frequency mortality series. Using daily mean-mortality series of an exemplar intensive care unit (ICU) from the Australian and New Zealand Intensive Care Society adult patient database, joint estimation of a mean and conditional variance (volatility) model for a stationary series was undertaken via univariate autoregressive moving average (ARMA, lags (p, q)), GARCH (Generalised Autoregressive Conditional Heteroscedasticity, lags (p, q)). The temporal dynamics of the conditional variance and correlations of multiple provider series, from rural/ regional, metropolitan, tertiary and private ICUs, were estimated utilising multivariate GARCH models. For the stationary first differenced series, an asymmetric power GARCH model (lags (1, 1)) with t distribution (degrees-of- freedom, 11.6) and ARMA (7,0) for the mean-model, was the best-fitting. The four multivariate component series demonstrated varying trend mortality decline and persistent autocorrelation. Within each MGARCH series no model specification dominated. The conditional correlations were surprisingly low (<0.1) between tertiary series and substantial (0.4 - 0.6) between rural-regional and private series. The conditional-variances of both the univariate and multivariate series demonstrated a slow rate of time decline from periods of early volatility and volatility spikes.
文摘The existing pattern matching methods of multivariate time series can hardly measure the similarity of multivariate hydrological time series accurately and efficiently.Considering the characteristics of multivariate hydrological time series,the continuity and global features of variables,we proposed a pattern matching method,PP-DTW,which is based on dynamic time warping.In this method,the multivariate time series is firstly segmented,and the average of each segment is used as the feature.Then,PCA is operated on the feature sequence.Finally,the weighted DTW distance is used as the measure of similarity in sequences.Carrying out experiments on the hydrological data of Chu River,we conclude that the pattern matching method can effectively describe the overall characteristics of the multivariate time series,which has a good matching effect on the multivariate hydrological time series.
文摘Periodicity is common in natural processes, however, extraction tools are typically difficult and cumbersome to use. Here we report a computational method developed in MATLAB through a function called Periods with the aim to find the main harmonic components of time series data. This function is designed to obtain the period, amplitude and lag phase of the main harmonic components in a time series (Periods and lag phase components can be related to climate, social or economic events). It is based on methods of periodic regression with cyclic descent and includes statistical significance testing. The proposed method is very easy to use. Furthermore, it does not require full understanding of time series theory, nor require many inputs from the user. However, it is sufficiently flexible to undertake more complex tasks such as forecasting. Additionally, based on previous knowledge, specific periods can be included or excluded easily. The output results are organized into two groups. One contains the parameters of the adjusted model and their F statistics. The other consists of the harmonic parameters that best fit the original series according to their importance and the summarized statistics of the comparisons between successive models in the cyclic descent process. Periods is tested with both, simulated and actual sunspot and Multivariate ENSO Index data to show its performance and accuracy.
基金supported by the National Key Research and Development Program of China (No. 2021YFB3300503)Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (No. U22A20167)National Natural Science Foundation of China (No. 61872260).
文摘Long-term multivariate time series forecasting is an important task in engineering applications. It helps grasp the future development trend of data in real-time, which is of great significance for a wide variety of fields. Due to the non-linear and unstable characteristics of multivariate time series, the existing methods encounter difficulties in analyzing complex high-dimensional data and capturing latent relationships between multivariates in time series, thus affecting the performance of long-term prediction. In this paper, we propose a novel time series forecasting model based on multilayer perceptron that combines spatio-temporal decomposition and doubly residual stacking, namely Spatio-Temporal Decomposition Neural Network (STDNet). We decompose the originally complex and unstable time series into two parts, temporal term and spatial term. We design temporal module based on auto-correlation mechanism to discover temporal dependencies at the sub-series level, and spatial module based on convolutional neural network and self-attention mechanism to integrate multivariate information from two dimensions, global and local, respectively. Then we integrate the results obtained from the different modules to get the final forecast. Extensive experiments on four real-world datasets show that STDNet significantly outperforms other state-of-the-art methods, which provides an effective solution for long-term time series forecasting.
基金Supported by the National Natural Science Foundation of China(71101043,70901041,71171113)the Joint Research Project of National Natural Science Foundation of China and Royal Society of UK(71111130211)+4 种基金the Major Program of National Funds of Social Science of China(10ZD&014,11&ZD168)the Doctoral Fundof Ministry of Education of China(20093218120032,200802870020)the Qinglan Project for Excellent Youth Teacherin Jiangsu Province(China)Research Funding in Nanjing University of Aeronautics and Astronautics(NR2011002)the Central University Scientific Research Expenses of HoHai University(2011B09914,2010B11114)~~
文摘The analysis result of absolute degree of grey incidence for multivariate time series is often inconsistent with the qualitative analysis. To overcome this shortage, a multivariate absolute degree of grey incidence based on distribution characteristics of points is proposed. Based on the geometric description of multivariate time se- ries, the neighborhood extrema are extracted in the different regions, and a characteristic point set is constructed. Then according to the distribution of the characteristic point set, a characteristic point sequence reflecting the ge- ometric features of multivariate time series is obtained. The incidence analysis between multivariate time series is transformed into the relational analysis between characteristic point sequences, and a grey incidence model is established. The model possesses the properties of translational invariance, transpose and rank transform invari- ance, and satisfies the grey incidence analysis axioms. Finally, two cases are studied and the results prove the ef- fectiveness of the model.
基金supported by the National Natural Science Foundation of China(71401052)the Fundamental Research Funds for the Central Universities(2019B19514)。
文摘In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of multivariate time series on different scales are pooled and aggregated by spatial pyramid pooling to construct n levels feature pooling matrices on the same scale. Secondly,Deng's multivariate grey incidence model is introduced to measure the degree of incidence between feature pooling matrices at each level. Thirdly, grey incidence degrees at each level are integrated into a global incidence degree. Finally, the performance of the proposed model is verified on two data sets compared with a variety of algorithms. The results illustrate that the proposed model is more effective and efficient than other similarity measure algorithms.
基金supported by the National Natural Science Foundation of China(Grant No.60375003)the Chinese Aviation Foundation(Grant No.03153059).
文摘An information theory method is proposed to test the. Granger causality and contemporaneous conditional independence in Granger causality graph models. In the graphs, the vertex set denotes the component series of the multivariate time series, and the directed edges denote causal dependence, while the undirected edges reflect the instantaneous dependence. The presence of the edges is measured by a statistics based on conditional mutual information and tested by a permutation procedure. Furthermore, for the existed relations, a statistics based on the difference between general conditional mutual information and linear conditional mutual information is proposed to test the nonlinearity. The significance of the nonlinear test statistics is determined by a bootstrap method based on surrogate data. We investigate the finite sample behavior of the procedure through simulation time series with different dependence structures, including linear and nonlinear relations.
基金supported by Federal Ministry of Education and Research of Germany and the state of North-Rhine Westphalia as part of the Lamarr Institute for Machine Learning and Artificial Intelligence(Lamarr22B)EU in projects SoBigData++and CrexData,and by DFG within priority research program SPP VGI(project EVA-VGI).
文摘We introduce a concept of episode referring to a time interval in the development of a dynamic phenomenon that is characterized by multiple time-variant attributes.A data structure representing a single episode is a multivariate time series.To analyse collections of episodes,we propose an approach that is based on recognition of particular patterns in the temporal variation of the variables within episodes.Each episode is thus represented by a combination of patterns.Using this representation,we apply visual analytics techniques to fulfil a set of analysis tasks,such as investigation of the temporal distribution of the patterns,frequencies of transitions between the patterns in episode sequences,and co-occurrences of patterns of different variables within same episodes.We demonstrate our approach on two examples using real-world data,namely,dynamics of human mobility indicators during the COVID-19 pandemic and characteristics of football team movements during episodes of ball turnover.
文摘Wind power is one of the fastest-growing renewable energy sectors instrumental in the ongoing decarbonizationprocess. However, wind turbines are subjected to a wide range of dynamic loads which can cause more frequentfailures and downtime periods, leading to ever-increasing attention to effective Condition Monitoring strategies.In this paper, we propose a novel unsupervised deep anomaly detection framework to detect anomalies in windturbines based on SCADA data. We introduce a promising neural architecture, namely a Graph ConvolutionalAutoencoder for Multivariate Time series, to model the sensor network as a dynamical functional graph. Thisstructure improves the unsupervised learning capabilities of Autoencoders by considering individual sensormeasurements together with the nonlinear correlations existing among signals. On this basis, we developeda deep anomaly detection framework that was validated on 12 failure events occurred during 20 months ofoperation of four wind turbines. The results show that the proposed framework successfully detects anomaliesand anticipates SCADA alarms by outperforming other two recent neural approaches.