In the context of multivariate regular variation,the authors establish the first-order asymptotics of the spectral risk measure of portfolio loss.Furthermore,by the notion of second-order regular variation,the second-...In the context of multivariate regular variation,the authors establish the first-order asymptotics of the spectral risk measure of portfolio loss.Furthermore,by the notion of second-order regular variation,the second-order asymptotics of the spectral risk measure of portfolio loss is also presented.In order to illustrate the derived results,a numerical example with Monte Carlo simulation is carried out.展开更多
For the multiplicative background risk model,a distortion-type risk measure is used to measure the tail risk of the portfolio under a scenario probability measure with multivariate regular variation.In this paper,we i...For the multiplicative background risk model,a distortion-type risk measure is used to measure the tail risk of the portfolio under a scenario probability measure with multivariate regular variation.In this paper,we investigate the tail asymptotics of the portfolio loss ∑_(i=1)^(d)R_(i)S,where the stand-alone risk vector R=(R_(1),...,R_(d))follows a multivariate regular variation and is independent of the background risk factor S.An explicit asymptotic formula is established for the tail distortion risk measure,and an example is given to illustrate our obtained results.展开更多
基金supported by the Important Natural Science Foundation of Colleges and Universities of Anhui Province under Grant No.KJ2020A0122the Scientific Research Start-up Foundation of Hefei Normal University。
文摘In the context of multivariate regular variation,the authors establish the first-order asymptotics of the spectral risk measure of portfolio loss.Furthermore,by the notion of second-order regular variation,the second-order asymptotics of the spectral risk measure of portfolio loss is also presented.In order to illustrate the derived results,a numerical example with Monte Carlo simulation is carried out.
基金supported by the National Key Research and Development Plan(No.2016YFC0800100)the NSFC of China(Nos.11671374,71771203,71631006).
文摘For the multiplicative background risk model,a distortion-type risk measure is used to measure the tail risk of the portfolio under a scenario probability measure with multivariate regular variation.In this paper,we investigate the tail asymptotics of the portfolio loss ∑_(i=1)^(d)R_(i)S,where the stand-alone risk vector R=(R_(1),...,R_(d))follows a multivariate regular variation and is independent of the background risk factor S.An explicit asymptotic formula is established for the tail distortion risk measure,and an example is given to illustrate our obtained results.