This paper compares the statistical properties of time-varying causality tests when errors of variables have multivariate stochastic volatility (SV). The time-varying causal-ity tests in this paper are based on a logi...This paper compares the statistical properties of time-varying causality tests when errors of variables have multivariate stochastic volatility (SV). The time-varying causal-ity tests in this paper are based on a logistic smooth transition autoregressive model. The compared time-varying causality tests include asymptotic tests, heteroskedasticity-robust tests, and tests using wild bootstrap. Our simulation results show that asymptotic tests and heteroskedasticity-robust counterparts have size distortions under multivariate SV, whereas tests using wild bootstrap have better size properties regardless of type of error. In particular, the time-varying causality test with first-order Taylor approximation using wild bootstrap has better statistical properties.展开更多
It is important to consider the changing states in hedging.The Markov regime-switching dynamic correlation multivariate stochastic volatility( MRS-DC-MSV) model was proposed to solve this issue. DC-MSV model and MRS-D...It is important to consider the changing states in hedging.The Markov regime-switching dynamic correlation multivariate stochastic volatility( MRS-DC-MSV) model was proposed to solve this issue. DC-MSV model and MRS-DC-MSV model were used to calculate the time-varying hedging ratios and compare the hedging performance. The Markov chain Monte Carlo( MCMC) method was used to estimate the parameters. The results showed that,there were obviously two economic states in Chinese financial market. Two models all did well in hedging,but the performance of MRS-DCMSV model was better. It could reduce risk by nearly 90%. Thus,in the hedging period,changing states is a factor that cannot be neglected.展开更多
文摘This paper compares the statistical properties of time-varying causality tests when errors of variables have multivariate stochastic volatility (SV). The time-varying causal-ity tests in this paper are based on a logistic smooth transition autoregressive model. The compared time-varying causality tests include asymptotic tests, heteroskedasticity-robust tests, and tests using wild bootstrap. Our simulation results show that asymptotic tests and heteroskedasticity-robust counterparts have size distortions under multivariate SV, whereas tests using wild bootstrap have better size properties regardless of type of error. In particular, the time-varying causality test with first-order Taylor approximation using wild bootstrap has better statistical properties.
基金National Natural Science Foundation of China(No.71401144)
文摘It is important to consider the changing states in hedging.The Markov regime-switching dynamic correlation multivariate stochastic volatility( MRS-DC-MSV) model was proposed to solve this issue. DC-MSV model and MRS-DC-MSV model were used to calculate the time-varying hedging ratios and compare the hedging performance. The Markov chain Monte Carlo( MCMC) method was used to estimate the parameters. The results showed that,there were obviously two economic states in Chinese financial market. Two models all did well in hedging,but the performance of MRS-DCMSV model was better. It could reduce risk by nearly 90%. Thus,in the hedging period,changing states is a factor that cannot be neglected.