Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all hardware circuit, arc voltage during peak current stage is sampled and inte...Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all hardware circuit, arc voltage during peak current stage is sampled and integrated to indicate arc length, deviation of arc length and adjusting parameters are calculated and output to drive a step motor directly. According to the features of welding image grabbed with CCD camera, a special algorithm was developed to detect the central line of weld fast and accurately. Then an application system were established, whose static arc length error is ±0.1 mm with 20 A average current and 1 mm given arc length, static detection precision of weld is 0.01 mm , processing time of each image is less than 120 ms . Precision pulse TIG welding of some given thin stainless steel components with complicated curved surface was successfully realized.展开更多
RFLPs for XbaI, BelI and BglI sites of human FⅧwere informative for 48%, 41% and 15% of females studied, respectively. BglI RFLP is different from that reported by Chan et al, a fact suggests Yangtze River region pop...RFLPs for XbaI, BelI and BglI sites of human FⅧwere informative for 48%, 41% and 15% of females studied, respectively. BglI RFLP is different from that reported by Chan et al, a fact suggests Yangtze River region population of China would be at variance with the Southern Chinese population in certain RFLP distribution. TaqI allelic system Ⅰin the DXS52 region also shows the same variance among them, but heterozygous rate 0f 71% for system Ⅰ(alleles 1 to 8) and 49% for system Ⅱ(αand βalleles) were very similar. Using the Bell/XbaI RFLPs, accurate information could be obtained from this study for 56% of women who were at risk for hemophilia A (HA) carriership. The carrier of the remaining 44% could be determined by utilizing the TaqI RFLP. In addition, we report a new intergenie polymorphism (9%) at DXS115 as a marker for detection of heterozygotes in families at risk for HA. The advantage of using the XbaI/KpnI RFLP is that both the intragemie RFLP and the new intergenie RFLP can be evaluated on the same blot at the same time.展开更多
In order to solve the problem that traditional signature-based malware detection systems are inefficacious in detecting new malware,a practical malware detection system is constructed to find out new malware. Applicat...In order to solve the problem that traditional signature-based malware detection systems are inefficacious in detecting new malware,a practical malware detection system is constructed to find out new malware. Application programming interface( API) call sequence is introduced to capture activities of a program in this system. After that,based on variable-length n-gram,API call order can be extracted from API call sequence as the malicious behavior feature of a software. Compared with traditional methods,which use fixed-length n-gram,the solution can find more new malware. The experimental results show that the presented approach improves the accuracy of malware detection.展开更多
In order to recognize people's annoyance emotions in the working environment and evaluate emotional well- being, emotional speech in a work environment is induced to obtain adequate samples of emotional speech, and a...In order to recognize people's annoyance emotions in the working environment and evaluate emotional well- being, emotional speech in a work environment is induced to obtain adequate samples of emotional speech, and a Mandarin database with two thousands samples is built. In searching for annoyance-type emotion features, the prosodic feature and the voice quality feature parameters of the emotional statements are extracted first. Then an improved back propagation (BP) neural network based on the shuffled frog leaping algorithm (SFLA) is proposed to recognize the emotion. The recognition capability of the BP, radical basis function (RBF) and the SFLA neural networks are compared experimentally. The results show that the recognition ratio of the SFLA neural network is 4. 7% better than that of the BP neural network and 4. 3% better than that of the RBF neural network. The experimental results demonstrate that the random initial data trained by the SFLA can optimize the connection weights and thresholds of the neural network, speed up the convergence and improve the recognition rate.展开更多
Anomaly detection has been an active research topic in the field of network intrusion detection for many years. A novel method is presented for anomaly detection based on system calls into the kernels of Unix or Linux...Anomaly detection has been an active research topic in the field of network intrusion detection for many years. A novel method is presented for anomaly detection based on system calls into the kernels of Unix or Linux systems. The method uses the data mining technique to model the normal behavior of a privileged program and uses a variable-length pattern matching algorithm to perform the comparison of the current behavior and historic normal behavior, which is more suitable for this problem than the fixed-length pattern matching algorithm proposed by Forrest et al. At the detection stage, the particularity of the audit data is taken into account, and two alternative schemes could be used to distinguish between normalities and intrusions. The method gives attention to both computational efficiency and detection accuracy and is especially applicable for on-line detection. The performance of the method is evaluated using the typical testing data set, and the results show that it is significantly better than the anomaly detection method based on hidden Markov models proposed by Yan et al. and the method based on fixed-length patterns proposed by Forrest and Hofmeyr. The novel method has been applied to practical hosted-based intrusion detection systems and achieved high detection performance.展开更多
Sequence Time Domain Reflectometry (STDR) have been demonstrated to be a powerful technique for detecting the length of cable or length of open circuit or short circuit cables. Using this method along with using smart...Sequence Time Domain Reflectometry (STDR) have been demonstrated to be a powerful technique for detecting the length of cable or length of open circuit or short circuit cables. Using this method along with using smart meter on the main electrical panel board to monitor consumption if load at each circuit, enable user to monitor power consumption at each node (power outlet) only by operating a smart digital meter and an STDR circuitry on each circuit at the main electrical panel board. This paper introduces this method and examines it on dead-wire and energized wire with a load connected across it. Experimental results are demonstrated for both types. Test result show the potential application of this approach to provide consumption information and potential cost saving via feedback for users.展开更多
To develop a more robust endpoint detection algorithm, this paper first proposes a fuzzy adaptive smoothing algorithm. The general idea underlying adaptive smoothing is to adapt the short-term sub-band mean of the amp...To develop a more robust endpoint detection algorithm, this paper first proposes a fuzzy adaptive smoothing algorithm. The general idea underlying adaptive smoothing is to adapt the short-term sub-band mean of the amplitude to the local attributes of speech on the basis of discontinuity measures. The adaptive smoothing algorithm in this paper utilizes a scale-space framework through the minimal description length (MDL). We recommend using the fuzzy muhi-attribute decision making approach to select the proper sub-bands where the word boundary can be more reliably detected. The process and simulation of the fuzzy adaptive smoothing algorithm are given. The parameters utilize the mean amplitude of the audible frequency range (300 -3 700 Hz) and the sub-band mean of the amplitude (16 band filter-bank). We selected the audible band energy because of its usefulness in detecting high-energy regions and making the distinction between speech and noise. Otherwise, the fuzzy adaptive smoothing algorithm is processed in sub-band speech to utilize the full range of frequency information.展开更多
The paper analyzed a new watermarking detection paradigm including double detection thresholds based on sequential hypothesis testing. A joint design of watermarking encoding and detection was proposed. The paradigm h...The paper analyzed a new watermarking detection paradigm including double detection thresholds based on sequential hypothesis testing. A joint design of watermarking encoding and detection was proposed. The paradigm had good immunity to noisy signal attacks and high detection probability. Many experiments proved that the above algorithm can detect watermarks about 66% faster than popular detectors, which could have significant impact on many applications such as video watermarking detection and watermark-searching in a large database of digital contents.展开更多
Video synopsis is an effective and innovative way to produce short video abstraction for huge video archives,while keeping the dynamic characteristic of activities in the original video.Abnormal activity,as the critic...Video synopsis is an effective and innovative way to produce short video abstraction for huge video archives,while keeping the dynamic characteristic of activities in the original video.Abnormal activity,as the critical event,is always the main concern in video surveillance context.However,in traditional video synopsis,all the normal and abnormal activities are condensed together equally,which can make the synopsis video confused and worthless.In addition,the traditional video synopsis methods always neglect redundancy in the content domain.To solve the above-mentioned issues,a novel video synopsis method is proposed based on abnormal activity detection and key observation selection.In the proposed algorithm,activities are classified into normal and abnormal ones based on the sparse reconstruction cost from an atomically learned activity dictionary.And key observation selection using the minimum description length principle is conducted for eliminating content redundancy in normal activity.Experiments conducted in publicly available datasets demonstrate that the proposed approach can effectively generate satisfying synopsis videos.展开更多
Reliable detection of fundus lesion is important for automated screening of diabetic retinopathy. This paper presents a novel method to detect the fundus lesion in retinal fundus image based on a visual attention mode...Reliable detection of fundus lesion is important for automated screening of diabetic retinopathy. This paper presents a novel method to detect the fundus lesion in retinal fundus image based on a visual attention model. The proposed method intends to model the visual attention mechanism of ophthalmologists during observing fundus images. That is, the abnormal structures, such as the dark and bright lesions in the image, usually attract the most attention of experts, however, the normal structures, such as optic disc and vessels, have been usually selectively ignored. To measure the visual attention for abnormal and normal areas, the incremental coding length is computed in local and global manner respectively. The final saliency map of fundus lesion is a fusion of attention maps computed for the abnormal and normal areas. Experimental results conducted on the publicly DiaRetDB1 dataset show that the proposed method achieved a sensitivity of 0.71 at a specificity of 0.82 and an AUC of 0.76 for fundus lesion detection, and achieved an accuracy of 100% for normal area (optic disc) detection. The proposed method can assist the ophthalmologists in the inspection of fundus lesion.展开更多
针对行人航位推算(pedestrian dead reckoning,PDR)室内信号易受到环境和多径效应干扰的问题,提出一种基于多模型融合的室内PDR优化建模方法.给出多模型融合的室内PDR建模方法系统模型,包括步数检测、步长推算、方向推算以及位置推算4...针对行人航位推算(pedestrian dead reckoning,PDR)室内信号易受到环境和多径效应干扰的问题,提出一种基于多模型融合的室内PDR优化建模方法.给出多模型融合的室内PDR建模方法系统模型,包括步数检测、步长推算、方向推算以及位置推算4个关键阶段.该方法在步数检测阶段融合了峰值检测算法、局部最大值算法以及提前过零检测算法;在步长推算阶段融合Weinberg方法和Kim方法,并利用卡尔曼滤波算法校正步数检测和步长推算的误差.基于不同场景从步数、步长、方向、位置误差方面与传统算法进行比较.结果表明,该组合模型结合了传统步数检测和步长推算算法的特征识别结果,可实现对步数检测、步长推算过程中信号特征的优化处理;在手持场景下,步数检测识别准确,步长推算中值误差在0.060 m以内,方向推算平均绝对误差最小为3.06°,位置推算平均误差为0.2353 m,取得较好的室内步行状态识别与定位性能.展开更多
文摘Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all hardware circuit, arc voltage during peak current stage is sampled and integrated to indicate arc length, deviation of arc length and adjusting parameters are calculated and output to drive a step motor directly. According to the features of welding image grabbed with CCD camera, a special algorithm was developed to detect the central line of weld fast and accurately. Then an application system were established, whose static arc length error is ±0.1 mm with 20 A average current and 1 mm given arc length, static detection precision of weld is 0.01 mm , processing time of each image is less than 120 ms . Precision pulse TIG welding of some given thin stainless steel components with complicated curved surface was successfully realized.
文摘RFLPs for XbaI, BelI and BglI sites of human FⅧwere informative for 48%, 41% and 15% of females studied, respectively. BglI RFLP is different from that reported by Chan et al, a fact suggests Yangtze River region population of China would be at variance with the Southern Chinese population in certain RFLP distribution. TaqI allelic system Ⅰin the DXS52 region also shows the same variance among them, but heterozygous rate 0f 71% for system Ⅰ(alleles 1 to 8) and 49% for system Ⅱ(αand βalleles) were very similar. Using the Bell/XbaI RFLPs, accurate information could be obtained from this study for 56% of women who were at risk for hemophilia A (HA) carriership. The carrier of the remaining 44% could be determined by utilizing the TaqI RFLP. In addition, we report a new intergenie polymorphism (9%) at DXS115 as a marker for detection of heterozygotes in families at risk for HA. The advantage of using the XbaI/KpnI RFLP is that both the intragemie RFLP and the new intergenie RFLP can be evaluated on the same blot at the same time.
基金Supported by the National High Technology Research and Development Programme of China(No.2013AA014702)the Fundamental Research Funds for the Central University(No.2014PTB-00-04)the China Next Generation Internet Project(No.CNGI-12-02-027)
文摘In order to solve the problem that traditional signature-based malware detection systems are inefficacious in detecting new malware,a practical malware detection system is constructed to find out new malware. Application programming interface( API) call sequence is introduced to capture activities of a program in this system. After that,based on variable-length n-gram,API call order can be extracted from API call sequence as the malicious behavior feature of a software. Compared with traditional methods,which use fixed-length n-gram,the solution can find more new malware. The experimental results show that the presented approach improves the accuracy of malware detection.
基金The National Natural Science Foundation of China(No.61375028,61301219)China Postdoctoral Science Foundation(No.2012M520973)the Scientific Research Funds of Nanjing Institute of Technology(No.ZKJ201202)
文摘In order to recognize people's annoyance emotions in the working environment and evaluate emotional well- being, emotional speech in a work environment is induced to obtain adequate samples of emotional speech, and a Mandarin database with two thousands samples is built. In searching for annoyance-type emotion features, the prosodic feature and the voice quality feature parameters of the emotional statements are extracted first. Then an improved back propagation (BP) neural network based on the shuffled frog leaping algorithm (SFLA) is proposed to recognize the emotion. The recognition capability of the BP, radical basis function (RBF) and the SFLA neural networks are compared experimentally. The results show that the recognition ratio of the SFLA neural network is 4. 7% better than that of the BP neural network and 4. 3% better than that of the RBF neural network. The experimental results demonstrate that the random initial data trained by the SFLA can optimize the connection weights and thresholds of the neural network, speed up the convergence and improve the recognition rate.
基金supported by the National Grand Fundamental Research "973" Program of China (2004CB318109)the National High-Technology Research and Development Plan of China (2006AA01Z452)the National Information Security "242"Program of China (2005C39).
文摘Anomaly detection has been an active research topic in the field of network intrusion detection for many years. A novel method is presented for anomaly detection based on system calls into the kernels of Unix or Linux systems. The method uses the data mining technique to model the normal behavior of a privileged program and uses a variable-length pattern matching algorithm to perform the comparison of the current behavior and historic normal behavior, which is more suitable for this problem than the fixed-length pattern matching algorithm proposed by Forrest et al. At the detection stage, the particularity of the audit data is taken into account, and two alternative schemes could be used to distinguish between normalities and intrusions. The method gives attention to both computational efficiency and detection accuracy and is especially applicable for on-line detection. The performance of the method is evaluated using the typical testing data set, and the results show that it is significantly better than the anomaly detection method based on hidden Markov models proposed by Yan et al. and the method based on fixed-length patterns proposed by Forrest and Hofmeyr. The novel method has been applied to practical hosted-based intrusion detection systems and achieved high detection performance.
文摘Sequence Time Domain Reflectometry (STDR) have been demonstrated to be a powerful technique for detecting the length of cable or length of open circuit or short circuit cables. Using this method along with using smart meter on the main electrical panel board to monitor consumption if load at each circuit, enable user to monitor power consumption at each node (power outlet) only by operating a smart digital meter and an STDR circuitry on each circuit at the main electrical panel board. This paper introduces this method and examines it on dead-wire and energized wire with a load connected across it. Experimental results are demonstrated for both types. Test result show the potential application of this approach to provide consumption information and potential cost saving via feedback for users.
文摘To develop a more robust endpoint detection algorithm, this paper first proposes a fuzzy adaptive smoothing algorithm. The general idea underlying adaptive smoothing is to adapt the short-term sub-band mean of the amplitude to the local attributes of speech on the basis of discontinuity measures. The adaptive smoothing algorithm in this paper utilizes a scale-space framework through the minimal description length (MDL). We recommend using the fuzzy muhi-attribute decision making approach to select the proper sub-bands where the word boundary can be more reliably detected. The process and simulation of the fuzzy adaptive smoothing algorithm are given. The parameters utilize the mean amplitude of the audible frequency range (300 -3 700 Hz) and the sub-band mean of the amplitude (16 band filter-bank). We selected the audible band energy because of its usefulness in detecting high-energy regions and making the distinction between speech and noise. Otherwise, the fuzzy adaptive smoothing algorithm is processed in sub-band speech to utilize the full range of frequency information.
基金This is work is supported by Shanghai Municipal Education Commission (NO.04DC33, NO. 2000SG46)
文摘The paper analyzed a new watermarking detection paradigm including double detection thresholds based on sequential hypothesis testing. A joint design of watermarking encoding and detection was proposed. The paradigm had good immunity to noisy signal attacks and high detection probability. Many experiments proved that the above algorithm can detect watermarks about 66% faster than popular detectors, which could have significant impact on many applications such as video watermarking detection and watermark-searching in a large database of digital contents.
基金Supported by the National Natural Science Foundation of China(No.61402023)Beijing Technology and Business' University Youth Fund(No.QNJJ2014-23)Beijing Natural Science Foundation(No.4162019)
文摘Video synopsis is an effective and innovative way to produce short video abstraction for huge video archives,while keeping the dynamic characteristic of activities in the original video.Abnormal activity,as the critical event,is always the main concern in video surveillance context.However,in traditional video synopsis,all the normal and abnormal activities are condensed together equally,which can make the synopsis video confused and worthless.In addition,the traditional video synopsis methods always neglect redundancy in the content domain.To solve the above-mentioned issues,a novel video synopsis method is proposed based on abnormal activity detection and key observation selection.In the proposed algorithm,activities are classified into normal and abnormal ones based on the sparse reconstruction cost from an atomically learned activity dictionary.And key observation selection using the minimum description length principle is conducted for eliminating content redundancy in normal activity.Experiments conducted in publicly available datasets demonstrate that the proposed approach can effectively generate satisfying synopsis videos.
基金The authors would like to thank those who provided materials that were used in this study. This work was supported in part by the Natural Science Foundation of China under Grant 61472102, in part by the Fundamental Research Funds for the Central Universities under Grant HIT.NSRIF.2013091, and in part by the Humanity and Social Science Youth foundation of Ministry of Education of China under Grant 14YJC760001.
文摘Reliable detection of fundus lesion is important for automated screening of diabetic retinopathy. This paper presents a novel method to detect the fundus lesion in retinal fundus image based on a visual attention model. The proposed method intends to model the visual attention mechanism of ophthalmologists during observing fundus images. That is, the abnormal structures, such as the dark and bright lesions in the image, usually attract the most attention of experts, however, the normal structures, such as optic disc and vessels, have been usually selectively ignored. To measure the visual attention for abnormal and normal areas, the incremental coding length is computed in local and global manner respectively. The final saliency map of fundus lesion is a fusion of attention maps computed for the abnormal and normal areas. Experimental results conducted on the publicly DiaRetDB1 dataset show that the proposed method achieved a sensitivity of 0.71 at a specificity of 0.82 and an AUC of 0.76 for fundus lesion detection, and achieved an accuracy of 100% for normal area (optic disc) detection. The proposed method can assist the ophthalmologists in the inspection of fundus lesion.
文摘针对行人航位推算(pedestrian dead reckoning,PDR)室内信号易受到环境和多径效应干扰的问题,提出一种基于多模型融合的室内PDR优化建模方法.给出多模型融合的室内PDR建模方法系统模型,包括步数检测、步长推算、方向推算以及位置推算4个关键阶段.该方法在步数检测阶段融合了峰值检测算法、局部最大值算法以及提前过零检测算法;在步长推算阶段融合Weinberg方法和Kim方法,并利用卡尔曼滤波算法校正步数检测和步长推算的误差.基于不同场景从步数、步长、方向、位置误差方面与传统算法进行比较.结果表明,该组合模型结合了传统步数检测和步长推算算法的特征识别结果,可实现对步数检测、步长推算过程中信号特征的优化处理;在手持场景下,步数检测识别准确,步长推算中值误差在0.060 m以内,方向推算平均绝对误差最小为3.06°,位置推算平均误差为0.2353 m,取得较好的室内步行状态识别与定位性能.