Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typ...Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.展开更多
The methane(CH4) emissions from municipal solid waste(MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD(fir...The methane(CH4) emissions from municipal solid waste(MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD(firstorder decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition,degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2,107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 Mt in 2007. Compared with the CH4 emissions of 2.20 Mt in 2005, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t.Jiangsu province ranks the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general,the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.展开更多
Incineration experiments with MSW, which had been impregnated with heavy metals, were presented to obtain information on the volatilization behavior of the elements cadmium(Cd), lead(Pb), and zinc(Zn) under different ...Incineration experiments with MSW, which had been impregnated with heavy metals, were presented to obtain information on the volatilization behavior of the elements cadmium(Cd), lead(Pb), and zinc(Zn) under different conditions. Experiments were carried out in a bubbling fluid bed system connected to a customized inductively coupled plasma optical emission spectroscopy(ICP-OES) for analyzing metals in the flue gas. The results indicated that the combustion temperature, the gas atmosphere, and the chlorine content in the flue gas could affect the volatilization behavior of heavy metals. In the fluidized bed combustion, a large surface area was provided by the bed sand particles, and they may act as absorbents for the gaseous ash-forming compound. Comparer with the metals Cd and Pb, the vaporization of Zn was low. The formation of stable compounds such as ZnO·Al 2O 3 could greatly decrease the metals volatilization. The presence of chlorine would enhance the volatilization of heavy metals by increasing the formation of metal chlorides. However, when the oxygen content was high, the chlorinating reaction was kinetically hindered, which heavy metals release would be delayed.展开更多
Dioxins, which are of the most toxic materials on the earth, are principal emitted from waste incineration process. The molecular structures, toxicity parameters, such as toxicity equivalency factor, tolerable daily i...Dioxins, which are of the most toxic materials on the earth, are principal emitted from waste incineration process. The molecular structures, toxicity parameters, such as toxicity equivalency factor, tolerable daily intake and physic-chemical properties of dioxins are briefly summarized. Three formation mechanisms of dioxins in waste incineration process, namely as de novo synthesis, mechanisms involving small organic molecular as precursors and homogenous gas phase reaction mechanism are alto reviewed. The influencing factors for dioxins formation during waste incineration process are also discussed. Three major methods for reducing dioxins emission from waste incineration process are discussed based upon the formation mechanisms and influencing factors. A new waste incineration process with low dioxins emission and low hydrogen chloride corrosion has been proposed based on multi- stage unit operation principal according to formation mechanisms of dioxins and potential production location in waste incinerators.展开更多
Carbon dioxide, methane and nitrous oxide are the major Greenhouse Gases (GHG’s), which emit from landfill areas and contribute significantly to global warming. Moreover, that the global warming potential of methane ...Carbon dioxide, methane and nitrous oxide are the major Greenhouse Gases (GHG’s), which emit from landfill areas and contribute significantly to global warming. Moreover, that the global warming potential of methane is 21 times higher than that of carbon dioxide and it has highest generation (60%) than other gases. Therefore, there is immense concern for its abatement or utilization from landfill areas. Compared to the west, the composition of municipal solid waste (MSW) in developing countries has higher (40% - 60%) organic waste. This would have potential to emit higher GHG’s from per ton of MSW compared to developed world. Beside that landfills areas in India are not planned or en- gineered generally low lying open areas, where MSW is indiscriminate disposed. This leads to uncontrolled emission of trace gases, foul smell, bird menace, ground and surface water pollution etc. Due to scarcity of land in big cities, mu- nicipal authorities are using same landfill for nearly 10 - 20 years. Hence, the possibility of anaerobic emission of GHG’s further increases. In the present paper we had quantified the methane emission from three MSW landfill areas of Delhi i.e., Gazipur, Bhalswa and Okhla. The results showed that the range of methane emission various in winter from 12.94 to 58.41 and in Summer from 82.69 - 293 mg/m2/h in these landfill areas. The paper has also reviewed the literature on methane emission from India and the status of landfill areas in India.展开更多
The purpose of this article is to present the key elements for best performance and profitability of Municipal Solid Waste (MSW) management in a low-income city. The research provides an overview of methods and models...The purpose of this article is to present the key elements for best performance and profitability of Municipal Solid Waste (MSW) management in a low-income city. The research provides an overview of methods and models for integrated planning of a two-phase program: MSW collection and transportation, and MSW treatment. We present the case study of Matadi (the Democratic Republic of Congo) that has a low level of the MSW management compared to other African cities. We develop a spreadsheet model for collection and transportation of MSW which is relevant for low-income cities and enables determining the waste collection fee. A CDM decay model is used to predict the GHG emissions in disposal site. The MSW treatment plant in case of Matadi is evaluated. For the anaerobic digestion technology selected as appropriate for this plant, the key factors that ensure profitability of the plant are as follows: tipping fee from the municipality (19% of total revenue), amount of carbon credits which can sum up to 16% of the total revenue, expansion of waste collection range from 25 to 50 km. The methods of this study can be used for solving waste problem in other low-income cities where the budget for municipal services is scanty, particularly when starting from a very low level of MSW management.展开更多
Zero waste is a philosophy and a design principle of dealing with our waste stream for the ~21st century. After reviewing the available information, the goal of zero waste from landfill is considered to be unachievabl...Zero waste is a philosophy and a design principle of dealing with our waste stream for the ~21st century. After reviewing the available information, the goal of zero waste from landfill is considered to be unachievable by using known and proven methods and ~approaches . The comparison of various technologies shows that the conversion efficiencies depend upon the type of system chosen for processing residual waste, and the best overall diversion rate of waste management system that can be achieved is about 71%. The maximum achievable overall diversion rate can be increased to approximate 92% if current environmental regulations to permit the routine use of the bottom ash or char for advanced thermal technologies.展开更多
In Japan, each municipality generally has its own municipal solid waste incineration facilities because of the principle of self-management in the respective territories. Typically, a small municipality often owns a s...In Japan, each municipality generally has its own municipal solid waste incineration facilities because of the principle of self-management in the respective territories. Typically, a small municipality often owns a small facility. However, a large facility which can run continuously at high temperature with stability would be preferable if the dioxin generation mechanism is to be considered. Accordingly, municipalities in contiguous areas should cooperate mutually by using a large facility. To evaluate the effect of the concentration of large facilities, the authors created a GIS (Geographic Information System) based database of combustible waste generation at town level in Shizuoka Prefecture. Focusing on large facilities in Shizuoka City and superannuated facilities in Shida area, the authors evaluated the effect of the concentration of large facilities in Shizuoka city on utilization rate of facilities, energy balance and CO2 emissions. Our results showed the amount of light oil consumption and CO2 emissions increased because the mileage distance of garbage collection trucks becomes longer. However, the utilization rates of facilities and the amount of energy recovery from waste are improved. From these standpoints, the authors conclude that the concentration of large facilities is better compared to a single municipality based facility.展开更多
This study defines and compares four scenarios for MSW (municipal solid waste) management: Scenario 1, unsorted waste taken to a landfill (baseline scenario); Scenario 2, sorted waste used for home or communal co...This study defines and compares four scenarios for MSW (municipal solid waste) management: Scenario 1, unsorted waste taken to a landfill (baseline scenario); Scenario 2, sorted waste used for home or communal composting; Scenario 3, sorted waste used for anaerobic digestion; and Scenario 4, sorted waste taken to a composting centre. The results of this study suggest that Scenario 1 would emit the highest levels of GHG (greenhouse gas) emissions, 692 x 103 tonnes CO2eq per year. Scenario 3 would have the lowest levels of GHG emissions, 195 x 103 tonnes CO2eq per year. Compared with the baseline scenario, it yields a 72% reduction of GHG emissions with a total savings of 498 ~ 103 tonnes CO2eq per year. The second-best option is Scenario 2, followed closely by Scenario 4, both yield 66.6% reductions with deviation by 0.03%. The deviation is due to transportation, which emission is negligibly small. The amounts of GHG savings for Scenario 2 and 4 are 461.3 ×10^3 tonnes CO2eq per year and 461×10^3 tonnes CO2eq per year, respectively It is evident from these results that anaerobic digestion has the highest potential for reducing GHG emissions.展开更多
Population growth,waste generation,and massive waste mismanagement have led to environmental catastrophe.Management of municipal solid waste(MSW)requires an efficient and sustainable integrated system.The integrated t...Population growth,waste generation,and massive waste mismanagement have led to environmental catastrophe.Management of municipal solid waste(MSW)requires an efficient and sustainable integrated system.The integrated thermal processing of MSW is one of the best waste management techniques.In this study,energy analysis of MSW is carried out based on the material and energy balance of 2000 kg wet MSW,which contains 50%leachate.Once the leachate is removed,the dry MSW is sent for carbon content enhancement in carbonization to produce MSW-based char.Thereafter,the combustion of MSW-based char provided high heat and syngas to be used in a hydrothermal process for MSW leachate treatment.The result shows that the char fuel of MSW produces a sufficient amount of energy,13501.29 MJ(84.55%),in the form of synthetic gas by-product,which has a big potential as an energy source.The novelty of the proposed integrated thermal system is to produce 84.55%synthetic gas by-product,which is used for electricity production,cooking,food,and heat energy for industrial purposes.The proposed applications of this paper offer insightful information for policymaking regarding novel MSW techniques,which are economical,energy-efficient,and environmentally friendly.Thus,it increases the effectiveness of MSW utilization.展开更多
This article has the general objective of estimating the efficiency of urban solid waste management in 940 Brazilian munici-palities through Data Envelopment Analysis(DEA)technique and has specific objectives:(i)to es...This article has the general objective of estimating the efficiency of urban solid waste management in 940 Brazilian munici-palities through Data Envelopment Analysis(DEA)technique and has specific objectives:(i)to estimate efficiency scores;(ii)to compare the performance between different groups of municipalities;and(ii)to analyze the profile of efficient munici-palities from the perspective of the guidelines of Law 12,305/2010 and socio-economic and environmental indicators.The technique used was DEA with output-oriented and variable scale to return modeling.The results showed higher efficiency scores in the municipalities with populations above 500,000 inhabitants.The score variation ranged from 0.5(municipalities with populations<10,000 inhabitants)to 0.9(municipalities with more than 500,000 inhabitants).Of the sample set,only 12.34%of the municipalities were considered efficient,and when analyzing the efficient group,it was found that adherence to legislation was not a major factor in achieving efficiency.展开更多
基金support was received the Science&Technology Foundation of RIPP(PR20230092,PR20230259)the National Natural Science Foundation of China(22278419)the Key Core Technology Research(Social Development)Foundation of Suzhou(2023ss06).
文摘Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.
基金funded by the Project Study on Key Issues of China City Carbon Emission Inventory (No. 41101500)supported by National Natural Science Foundation of China
文摘The methane(CH4) emissions from municipal solid waste(MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD(firstorder decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition,degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2,107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 Mt in 2007. Compared with the CH4 emissions of 2.20 Mt in 2005, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t.Jiangsu province ranks the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general,the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.
文摘Incineration experiments with MSW, which had been impregnated with heavy metals, were presented to obtain information on the volatilization behavior of the elements cadmium(Cd), lead(Pb), and zinc(Zn) under different conditions. Experiments were carried out in a bubbling fluid bed system connected to a customized inductively coupled plasma optical emission spectroscopy(ICP-OES) for analyzing metals in the flue gas. The results indicated that the combustion temperature, the gas atmosphere, and the chlorine content in the flue gas could affect the volatilization behavior of heavy metals. In the fluidized bed combustion, a large surface area was provided by the bed sand particles, and they may act as absorbents for the gaseous ash-forming compound. Comparer with the metals Cd and Pb, the vaporization of Zn was low. The formation of stable compounds such as ZnO·Al 2O 3 could greatly decrease the metals volatilization. The presence of chlorine would enhance the volatilization of heavy metals by increasing the formation of metal chlorides. However, when the oxygen content was high, the chlorinating reaction was kinetically hindered, which heavy metals release would be delayed.
文摘Dioxins, which are of the most toxic materials on the earth, are principal emitted from waste incineration process. The molecular structures, toxicity parameters, such as toxicity equivalency factor, tolerable daily intake and physic-chemical properties of dioxins are briefly summarized. Three formation mechanisms of dioxins in waste incineration process, namely as de novo synthesis, mechanisms involving small organic molecular as precursors and homogenous gas phase reaction mechanism are alto reviewed. The influencing factors for dioxins formation during waste incineration process are also discussed. Three major methods for reducing dioxins emission from waste incineration process are discussed based upon the formation mechanisms and influencing factors. A new waste incineration process with low dioxins emission and low hydrogen chloride corrosion has been proposed based on multi- stage unit operation principal according to formation mechanisms of dioxins and potential production location in waste incinerators.
文摘Carbon dioxide, methane and nitrous oxide are the major Greenhouse Gases (GHG’s), which emit from landfill areas and contribute significantly to global warming. Moreover, that the global warming potential of methane is 21 times higher than that of carbon dioxide and it has highest generation (60%) than other gases. Therefore, there is immense concern for its abatement or utilization from landfill areas. Compared to the west, the composition of municipal solid waste (MSW) in developing countries has higher (40% - 60%) organic waste. This would have potential to emit higher GHG’s from per ton of MSW compared to developed world. Beside that landfills areas in India are not planned or en- gineered generally low lying open areas, where MSW is indiscriminate disposed. This leads to uncontrolled emission of trace gases, foul smell, bird menace, ground and surface water pollution etc. Due to scarcity of land in big cities, mu- nicipal authorities are using same landfill for nearly 10 - 20 years. Hence, the possibility of anaerobic emission of GHG’s further increases. In the present paper we had quantified the methane emission from three MSW landfill areas of Delhi i.e., Gazipur, Bhalswa and Okhla. The results showed that the range of methane emission various in winter from 12.94 to 58.41 and in Summer from 82.69 - 293 mg/m2/h in these landfill areas. The paper has also reviewed the literature on methane emission from India and the status of landfill areas in India.
文摘The purpose of this article is to present the key elements for best performance and profitability of Municipal Solid Waste (MSW) management in a low-income city. The research provides an overview of methods and models for integrated planning of a two-phase program: MSW collection and transportation, and MSW treatment. We present the case study of Matadi (the Democratic Republic of Congo) that has a low level of the MSW management compared to other African cities. We develop a spreadsheet model for collection and transportation of MSW which is relevant for low-income cities and enables determining the waste collection fee. A CDM decay model is used to predict the GHG emissions in disposal site. The MSW treatment plant in case of Matadi is evaluated. For the anaerobic digestion technology selected as appropriate for this plant, the key factors that ensure profitability of the plant are as follows: tipping fee from the municipality (19% of total revenue), amount of carbon credits which can sum up to 16% of the total revenue, expansion of waste collection range from 25 to 50 km. The methods of this study can be used for solving waste problem in other low-income cities where the budget for municipal services is scanty, particularly when starting from a very low level of MSW management.
文摘Zero waste is a philosophy and a design principle of dealing with our waste stream for the ~21st century. After reviewing the available information, the goal of zero waste from landfill is considered to be unachievable by using known and proven methods and ~approaches . The comparison of various technologies shows that the conversion efficiencies depend upon the type of system chosen for processing residual waste, and the best overall diversion rate of waste management system that can be achieved is about 71%. The maximum achievable overall diversion rate can be increased to approximate 92% if current environmental regulations to permit the routine use of the bottom ash or char for advanced thermal technologies.
文摘In Japan, each municipality generally has its own municipal solid waste incineration facilities because of the principle of self-management in the respective territories. Typically, a small municipality often owns a small facility. However, a large facility which can run continuously at high temperature with stability would be preferable if the dioxin generation mechanism is to be considered. Accordingly, municipalities in contiguous areas should cooperate mutually by using a large facility. To evaluate the effect of the concentration of large facilities, the authors created a GIS (Geographic Information System) based database of combustible waste generation at town level in Shizuoka Prefecture. Focusing on large facilities in Shizuoka City and superannuated facilities in Shida area, the authors evaluated the effect of the concentration of large facilities in Shizuoka city on utilization rate of facilities, energy balance and CO2 emissions. Our results showed the amount of light oil consumption and CO2 emissions increased because the mileage distance of garbage collection trucks becomes longer. However, the utilization rates of facilities and the amount of energy recovery from waste are improved. From these standpoints, the authors conclude that the concentration of large facilities is better compared to a single municipality based facility.
文摘This study defines and compares four scenarios for MSW (municipal solid waste) management: Scenario 1, unsorted waste taken to a landfill (baseline scenario); Scenario 2, sorted waste used for home or communal composting; Scenario 3, sorted waste used for anaerobic digestion; and Scenario 4, sorted waste taken to a composting centre. The results of this study suggest that Scenario 1 would emit the highest levels of GHG (greenhouse gas) emissions, 692 x 103 tonnes CO2eq per year. Scenario 3 would have the lowest levels of GHG emissions, 195 x 103 tonnes CO2eq per year. Compared with the baseline scenario, it yields a 72% reduction of GHG emissions with a total savings of 498 ~ 103 tonnes CO2eq per year. The second-best option is Scenario 2, followed closely by Scenario 4, both yield 66.6% reductions with deviation by 0.03%. The deviation is due to transportation, which emission is negligibly small. The amounts of GHG savings for Scenario 2 and 4 are 461.3 ×10^3 tonnes CO2eq per year and 461×10^3 tonnes CO2eq per year, respectively It is evident from these results that anaerobic digestion has the highest potential for reducing GHG emissions.
基金supported by the Ministry of Higher Education of Malaysia through Fundamental Research Grant Scheme(No.FRGS/1/2019/TK10/UIAM/02/2).
文摘Population growth,waste generation,and massive waste mismanagement have led to environmental catastrophe.Management of municipal solid waste(MSW)requires an efficient and sustainable integrated system.The integrated thermal processing of MSW is one of the best waste management techniques.In this study,energy analysis of MSW is carried out based on the material and energy balance of 2000 kg wet MSW,which contains 50%leachate.Once the leachate is removed,the dry MSW is sent for carbon content enhancement in carbonization to produce MSW-based char.Thereafter,the combustion of MSW-based char provided high heat and syngas to be used in a hydrothermal process for MSW leachate treatment.The result shows that the char fuel of MSW produces a sufficient amount of energy,13501.29 MJ(84.55%),in the form of synthetic gas by-product,which has a big potential as an energy source.The novelty of the proposed integrated thermal system is to produce 84.55%synthetic gas by-product,which is used for electricity production,cooking,food,and heat energy for industrial purposes.The proposed applications of this paper offer insightful information for policymaking regarding novel MSW techniques,which are economical,energy-efficient,and environmentally friendly.Thus,it increases the effectiveness of MSW utilization.
基金the research unit on Governance,Competitiveness and Public Policy(UIDB/04058/2020+UIDP/04058/2020)funded by national funds through Fundacao para a Ciencia e a Tecnologia(FCT)。
文摘This article has the general objective of estimating the efficiency of urban solid waste management in 940 Brazilian munici-palities through Data Envelopment Analysis(DEA)technique and has specific objectives:(i)to estimate efficiency scores;(ii)to compare the performance between different groups of municipalities;and(ii)to analyze the profile of efficient munici-palities from the perspective of the guidelines of Law 12,305/2010 and socio-economic and environmental indicators.The technique used was DEA with output-oriented and variable scale to return modeling.The results showed higher efficiency scores in the municipalities with populations above 500,000 inhabitants.The score variation ranged from 0.5(municipalities with populations<10,000 inhabitants)to 0.9(municipalities with more than 500,000 inhabitants).Of the sample set,only 12.34%of the municipalities were considered efficient,and when analyzing the efficient group,it was found that adherence to legislation was not a major factor in achieving efficiency.