Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills, this study tested, during a four-year project, the hypothesis that the proper use ...Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills, this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N2O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N2O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N2O flux.展开更多
The purpose of this study was to analyze the migration pathways of contaminants from closed landfills and to estimate health risks based on soil characteristics. The health risks were estimated using Framework for Ris...The purpose of this study was to analyze the migration pathways of contaminants from closed landfills and to estimate health risks based on soil characteristics. The health risks were estimated using Framework for Risk Analysis Multimedia Environmental Systems (FRAMES) software. The sensitivity of human health risks and hazard indices due to vinyl chloride contamination in groundwater were performed in relation to soil characteristics such as Darcy velocity, thickness of soil layer, mass of contaminant present in the aquifer. Based on the analysis, Darcy velocity showed no effect on estimated risks. Since soil layer thickness had a significant effect on the estimated health risks, effects of different soil types on estimated risks were analyzed. The results showed that soils from the least appropriate to the most appropriate for risk management due to groundwater contamination were sand, sandy clay, sandy loam, loam and clay loam. FRAMES model was suitable for assessing the health risks due to vinyl chloride contamination in groundwater originating from a municipal solid waste landfill. The model showed the changes in both carcinogenic and non carcinogenic risks over time. The estimated health risks were directly correlated with the levels of vinyl chloride detected in groundwater.展开更多
Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In co...Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In contrast to the conventional landfill, this paper introduces a new technique named bioreactor landfill (BL). Mechanisms, operation conditions as well as the advantages and disadvantages of BL are also discussed in this paper.展开更多
Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was compos...Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was composed of four zones: Phase I, II, Phase III, and SP. The surface of Phase I was fully covered and its conditions are better for surface emission measurements. As results concerning the Phase I zone, the geospatial means flux rates of CH4 (657 mg m-2 h l in 2017 and 1210 mg m 2 h_, in 2018, respectively) are measured higher than the tolerable value reported in literature. The emitted CH4 or C 02 have permitted to locate higher surface emissions which are related to the cover state. The calculated gas collection efficiency (27.4% in 2017 and 23.0% in 2018) is low compared to those reported for landfills integrating landfill gas (LFG) extraction system. The carbon footprint calculations (24,966 tC02-eq 2017 and 40,025 tC02-eq in 2018, respectively) shown that Polesgo's landfill is a significant source of greenhouse gases (GHG) and its important potential for organic recovery can contribute to reduce the carbon footprint.展开更多
Variation of CH4, CO2, and O2 concentrations in layers of different depths in semi-aerobic and anaerobic landfills was analyzed over a period of 5 years. The results showed that most of the municipal solid waste becam...Variation of CH4, CO2, and O2 concentrations in layers of different depths in semi-aerobic and anaerobic landfills was analyzed over a period of 5 years. The results showed that most of the municipal solid waste became basically stable after 5 years of landfill disposal. In the upper and middle layer, the concentration of CH4 in the semi-aerobic landfill was significantly lower than that in the anaerobic landfill in different landfill periods, while in the lower layer, there was little difference in the CH4 concentration between the semi-aerobic and anaerobic landfills. The average concentration of CH4 and CO2in the anaerobic landfill was always higher than that in the semi-aerobic landfill, while the O2 concentration showed an opposite variation in different landfill periods. This was related to the aerobic reaction of landfill waste around the perforated pipe in the semi-aerobic landfill,which inhibited effective landfill gas generation.展开更多
A complex seepage flow field with unknown free surface was formed in the Shanghai Laogang Municipal Solid Waste (MSW) Landfill by the perimeter cut-off wall around the landfill site and the Prefabricated Vertical Dr...A complex seepage flow field with unknown free surface was formed in the Shanghai Laogang Municipal Solid Waste (MSW) Landfill by the perimeter cut-off wall around the landfill site and the Prefabricated Vertical Drains (PVD) in the foundation of landfill. First, the equivalent vertical permeability was presented based on the drainage mechanism of PVD and the related calculation method was studied to macroscopically reflect the impact of PVD on the seepage flow status of the landfill foundation. With the influence of the cut-off wall and the PVD on the infiltration of groundwater, the total inflow was classified into two parts: the lateral inflow through the cut-off wall outside the landfill, and the upward infiltration through the PVD from the foundation of the landfill. Seepage analysis was conducted using the finite element method according to the actual scenario of Laogang Landfill, and the lateral infiltration and the upward infiltration were calculated, respectively. The results show that the total inflow into the landfill area was mostly supplied by the upward infiltration through the PVD and the perimeter cut-off wall was significantly effective to depressurize the seepage pressure and to reduce the flow rate.展开更多
基金This work was supported by the National Science and Technology Supporting Program of China (No. 2006BAJ04A06, 2006BAC06B05) ;the National Natural Science Foundation of China (No. 50538080).
文摘Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills, this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N2O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N2O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N2O flux.
文摘The purpose of this study was to analyze the migration pathways of contaminants from closed landfills and to estimate health risks based on soil characteristics. The health risks were estimated using Framework for Risk Analysis Multimedia Environmental Systems (FRAMES) software. The sensitivity of human health risks and hazard indices due to vinyl chloride contamination in groundwater were performed in relation to soil characteristics such as Darcy velocity, thickness of soil layer, mass of contaminant present in the aquifer. Based on the analysis, Darcy velocity showed no effect on estimated risks. Since soil layer thickness had a significant effect on the estimated health risks, effects of different soil types on estimated risks were analyzed. The results showed that soils from the least appropriate to the most appropriate for risk management due to groundwater contamination were sand, sandy clay, sandy loam, loam and clay loam. FRAMES model was suitable for assessing the health risks due to vinyl chloride contamination in groundwater originating from a municipal solid waste landfill. The model showed the changes in both carcinogenic and non carcinogenic risks over time. The estimated health risks were directly correlated with the levels of vinyl chloride detected in groundwater.
文摘Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In contrast to the conventional landfill, this paper introduces a new technique named bioreactor landfill (BL). Mechanisms, operation conditions as well as the advantages and disadvantages of BL are also discussed in this paper.
文摘Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was composed of four zones: Phase I, II, Phase III, and SP. The surface of Phase I was fully covered and its conditions are better for surface emission measurements. As results concerning the Phase I zone, the geospatial means flux rates of CH4 (657 mg m-2 h l in 2017 and 1210 mg m 2 h_, in 2018, respectively) are measured higher than the tolerable value reported in literature. The emitted CH4 or C 02 have permitted to locate higher surface emissions which are related to the cover state. The calculated gas collection efficiency (27.4% in 2017 and 23.0% in 2018) is low compared to those reported for landfills integrating landfill gas (LFG) extraction system. The carbon footprint calculations (24,966 tC02-eq 2017 and 40,025 tC02-eq in 2018, respectively) shown that Polesgo's landfill is a significant source of greenhouse gases (GHG) and its important potential for organic recovery can contribute to reduce the carbon footprint.
基金supported by the National Science and Technology Support Program Project(No.2014BAL02B01)
文摘Variation of CH4, CO2, and O2 concentrations in layers of different depths in semi-aerobic and anaerobic landfills was analyzed over a period of 5 years. The results showed that most of the municipal solid waste became basically stable after 5 years of landfill disposal. In the upper and middle layer, the concentration of CH4 in the semi-aerobic landfill was significantly lower than that in the anaerobic landfill in different landfill periods, while in the lower layer, there was little difference in the CH4 concentration between the semi-aerobic and anaerobic landfills. The average concentration of CH4 and CO2in the anaerobic landfill was always higher than that in the semi-aerobic landfill, while the O2 concentration showed an opposite variation in different landfill periods. This was related to the aerobic reaction of landfill waste around the perforated pipe in the semi-aerobic landfill,which inhibited effective landfill gas generation.
基金Project supported by the National Natural Science Foundation of China (Grant No: 40201024)
文摘A complex seepage flow field with unknown free surface was formed in the Shanghai Laogang Municipal Solid Waste (MSW) Landfill by the perimeter cut-off wall around the landfill site and the Prefabricated Vertical Drains (PVD) in the foundation of landfill. First, the equivalent vertical permeability was presented based on the drainage mechanism of PVD and the related calculation method was studied to macroscopically reflect the impact of PVD on the seepage flow status of the landfill foundation. With the influence of the cut-off wall and the PVD on the infiltration of groundwater, the total inflow was classified into two parts: the lateral inflow through the cut-off wall outside the landfill, and the upward infiltration through the PVD from the foundation of the landfill. Seepage analysis was conducted using the finite element method according to the actual scenario of Laogang Landfill, and the lateral infiltration and the upward infiltration were calculated, respectively. The results show that the total inflow into the landfill area was mostly supplied by the upward infiltration through the PVD and the perimeter cut-off wall was significantly effective to depressurize the seepage pressure and to reduce the flow rate.