The methane(CH4) emissions from municipal solid waste(MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD(fir...The methane(CH4) emissions from municipal solid waste(MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD(firstorder decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition,degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2,107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 Mt in 2007. Compared with the CH4 emissions of 2.20 Mt in 2005, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t.Jiangsu province ranks the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general,the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.展开更多
Activity development of key groups of enzymes involved in municipal refuse decomposition was measured in laboratory landfill bioreactors with and without leachate recycling and inoculation for about 210 days. The resu...Activity development of key groups of enzymes involved in municipal refuse decomposition was measured in laboratory landfill bioreactors with and without leachate recycling and inoculation for about 210 days. The results showed that the enzymes (amylase, protease, cellulase, lipase and pectinase) were present in fresh refuse but at low values and positively affected by leachate recycling and refuse inoculation. The total average of cellulase activity in digesters D3 operated with leachate recycling but no inoculation, D4 and D5 operated with leachate recycling and inoculation was much higher than that in digesters D1 and D2 without leachate recycling and inoculation by 88%—127%, 117%—162% and 64%—98%. The total average of protease activity was higher in digester D4 than that in digesters D1, D2, D3 and D5 by 63%, 39%, 24% and 24%, respectively, and the positive effect of leachate recycling and inoculation on protease activity of landfilled refuse mainly was at the first two months. The total average of amylase activity was higher in digesters D3, D4 and D5 than that in digesters D1 and D2 by 83%—132%, 96%—148% and 81%—129%. During the early phase of incubation, the stimulatory effect of inoculation on lipase activity was measured, but refuse moisture was the main factor affecting lipase activity of landfilled refuse. The inoculation, initial and continuous inoculation of microorganisms existing in leachate, was the mainly stimulatory factor affecting pectinase activity of landfilled refuse.展开更多
Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills, this study tested, during a four-year project, the hypothesis that the proper use ...Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills, this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N2O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N2O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N2O flux.展开更多
The effects of components and their ratio of grouts on anti-seepage capability of clay-solidified grouting curtain and its permeability of heavy metal cations were investigated by permeating experiments, using reactiv...The effects of components and their ratio of grouts on anti-seepage capability of clay-solidified grouting curtain and its permeability of heavy metal cations were investigated by permeating experiments, using reactive solute transport model to study the permeation of heavy metals (Cd2+, Pb2+ and Hg2+). The study of permeating for different mixture ratios of cement and clay indicates that hydraulic conductivity of clay-solidified grouting curtain with different ratios of solid to liquid or with the same ratio of solid to liquid but with different ratios of cement to clay is changed. The laboratory simulation test results also show that precipitates produced in heavy metal cation migration process in curtain block up water flowing passage which makes the hydraulic conductivity of the solution-permeated curtain decrease with the leakage time. The permeation velocities for different heavy metal cations vary with ionic concentration, exchange capacity and ion radius etc. The test results indicate that the permeation rapidity order of heavy metals cations in clay-solidified grouting curtain is Hg2+>Pb2+ in the same experimental circumstance. In addition, permeability for different mixture ratios and antisepsis capabilities of clay-solidified grouting curtain were studied in tests.展开更多
Accidental collapse resulted from unstable factors is an important technological problem to be solved in sanitary landfill. Microbiological degradation of organic matters in landfilled solid waste are an important uns...Accidental collapse resulted from unstable factors is an important technological problem to be solved in sanitary landfill. Microbiological degradation of organic matters in landfilled solid waste are an important unstable factor. A landfill reactor was thus manufactured and installed to examine quantitative and population dynamics of microorganisms during degradation of landfilled solid waste. It was showed that unstable landfill can be reflected and indicated by microbiological features such as rapidly decreased growth amount of microorganisms, no detection of fungi and actinomyces, and changing the dominant population into methanogenic bacteria and Acinotobacter.展开更多
Carbon dioxide, methane and nitrous oxide are the major Greenhouse Gases (GHG’s), which emit from landfill areas and contribute significantly to global warming. Moreover, that the global warming potential of methane ...Carbon dioxide, methane and nitrous oxide are the major Greenhouse Gases (GHG’s), which emit from landfill areas and contribute significantly to global warming. Moreover, that the global warming potential of methane is 21 times higher than that of carbon dioxide and it has highest generation (60%) than other gases. Therefore, there is immense concern for its abatement or utilization from landfill areas. Compared to the west, the composition of municipal solid waste (MSW) in developing countries has higher (40% - 60%) organic waste. This would have potential to emit higher GHG’s from per ton of MSW compared to developed world. Beside that landfills areas in India are not planned or en- gineered generally low lying open areas, where MSW is indiscriminate disposed. This leads to uncontrolled emission of trace gases, foul smell, bird menace, ground and surface water pollution etc. Due to scarcity of land in big cities, mu- nicipal authorities are using same landfill for nearly 10 - 20 years. Hence, the possibility of anaerobic emission of GHG’s further increases. In the present paper we had quantified the methane emission from three MSW landfill areas of Delhi i.e., Gazipur, Bhalswa and Okhla. The results showed that the range of methane emission various in winter from 12.94 to 58.41 and in Summer from 82.69 - 293 mg/m2/h in these landfill areas. The paper has also reviewed the literature on methane emission from India and the status of landfill areas in India.展开更多
Based on the degradation characteristics of municipal solid waste(MSW)in China,the traditional anaerobic sequencing batch bioreactor landfill(ASBRL)was optimized,and an improved anaerobic sequencing batch bioreactor l...Based on the degradation characteristics of municipal solid waste(MSW)in China,the traditional anaerobic sequencing batch bioreactor landfill(ASBRL)was optimized,and an improved anaerobic sequencing batch bioreactor landfill(IASBRL)was put forward on the basis of leachate self-recirculation.By monitoring MSW composition,leachate characteristics variation and landfill gas(LFG)generation,the effect of IASBRL was comparatively studied by simulation landfill.Based on the adjusting,scouring and carrying effects of leachate self-recirculation,IASBRL can rapidly decrease Eh value to about-500mV and form a suitable biochemical environment for methanogens,which provides a precondition for stable cooperation between non-methanogens and methanogens.IASBRL can avoid the accumulation of organic acids,make VFA(volatile fatty acid)concentration and CODCr decrease along with the small range fluctuations,and form a stable decomposition-consumption synergy during MSW degradation,therefore,the hydrolysis rate of easy hydrolyze material reaches 71.2% in IASBRL.From the viewpoint of LFG resources in IASBRL,the cumulative LFG production increases to 2327.0L,CH4 mass fraction stabilizes at about 50%,and these provide a favorable precondition for LFG development.展开更多
For quantitative estimation of the intra-layer porous structure in the initial stage of landfill formation with municipal solid waste incineration (MSWI) bottom ash, the water absorption of individual MSWI bottom ash ...For quantitative estimation of the intra-layer porous structure in the initial stage of landfill formation with municipal solid waste incineration (MSWI) bottom ash, the water absorption of individual MSWI bottom ash particles was measured under still-water, degassed, and agitated conditions. The ratio of the water absorption rate found for the still-water procedure to the effective absorption capacity which was the one under degassing was 35.2%. In the water flow experiment of a column filled with MSWI bottom ash, the true density of the bottom ash was higher after water flow than before, which indicated that dissolution of the soluble components of the bottom ash particle surfaces resulted in a loss of apparent particle volume that more than offset the accompanying weight loss. The volume-based water absorption rate found for the bottom ash particles following 50 mL/h water flow through the column, as a ratio to the effective absorption capacity was about 51.8% of the effective absorption capacity. In a landfill layer comprised of MSWI bottom ash, it was suggested that some regions of the ash particle interiors underwent almost no contact with water.展开更多
The objectives of this study are to determine the settlement and leachate generation from landfill lysimeters of municipal solid waste. Two identical lysimeters with a diameter and height of 0.70 m and 2.40 m were pre...The objectives of this study are to determine the settlement and leachate generation from landfill lysimeters of municipal solid waste. Two identical lysimeters with a diameter and height of 0.70 m and 2.40 m were prepared, respectively. The lysimeters were operated with and without leachate recirculation treatment. The settlement and leachate generation were quantified daily. The analysis of settlement was conducted by using hyperbolic function and curve fitting. Based on the experiments result, it is observed that garbage pile settlement in lysimeter treated with leachate recirculation (L-2) is higher than without recirculation treatment (L-1) as showed by the hyperbolic function and curve fitting result. The ultimate settlement (S_wlt) for L-1 and L-2 that used hyperbolic function were 0.487 m and 0.53 m, respectively. Meanwhile (S_wlt) that using curve fitting resulted 0.74 m, and 0.68 m for L-1 and L-2, respectively. The lysimeter which treated with leachate recirculation treatment showed a higher leachate height than without the treatment.展开更多
Engineering properties of municipal solid waste (MSW) depend largely on the waste's initial compositionand degree of degradation. MSWs in developing countries usually have a high kitchen waste content(called HKWC ...Engineering properties of municipal solid waste (MSW) depend largely on the waste's initial compositionand degree of degradation. MSWs in developing countries usually have a high kitchen waste content(called HKWC MSW). After comparing and analyzing the laboratory and field test results of physicalcomposition, hydraulic properties, gas generation and gas permeability, and mechanical properties forHKWC MSW and low kitchen waste content MSW (called LKWC MSW), the following findings wereobtained: (1) HKWC MSW has a higher initial water content (IWC) than LKWC MSW, but the field capacitiesof decomposed HKWC and LKWC MSWs are similar; (2) the hydraulic conductivity and gaspermeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3)compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG) generation rate but a shorterduration and a lower potential capacity; (4) the primary compression feature for decomposed HKWCMSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation ofHKWC MSW is greater than that of LKWC MSW; and (5) the shear strength of HKWC MSW changessignificantly with time and strain. Based on the differences of engineering properties between these twokinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including highleachate production, high leachate mounds, low LFG collection efficiency, large settlement and slopestability problem, and corresponding advice for the management and design of HKWC MSW landfills wasrecommended.展开更多
Proper solid waste disposal is an important socioeconomic concern for all developing countries.Municipalities have their own policies,individual approaches and methods to manage the solid wastes.They consider wastelan...Proper solid waste disposal is an important socioeconomic concern for all developing countries.Municipalities have their own policies,individual approaches and methods to manage the solid wastes.They consider wastelands outside the urban area as the best suitable for the solid waste disposal.Such improper site selection will create morphological changes that lead to environmental hazards in the urban and its surrounding areas.In this research,the site selection for urban solid waste disposal in the Coimbatore district used geographical information system(GIS)and multi-criteria decision analysis(MCDA).Thematic layers of lineament density,landuse/landcover,population density,groundwater depth,drainage density,slope,soil texture,geology and geomorphology were considered as primary criteria and weights for criteria,and sub-criteria were assigned by MCDA analysis.The resultant weight score was validated by consistency ratio so that the efficiency of the selected criteria was justified.The overlay analysis in GIS environment provides 17 potential zones in Coimbatore district,among which,four suitable sites were screened and refined with the help of field investigation and visual interpretation of satellite image.The result of landfill suitability map shows the effectiveness of the proposed method.展开更多
Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The laboratory-scale simulators of landfill reactors tre...Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste(MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature decomposing MSW. The results of waste biodegradation were compared with that of the leachate-recirculated landfill simulator and conservative sanitary landfill simulator. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown. An obvious enhancement of effective disposal from conservative sanitary landfill(CSL) simulator, to the leachate-recirculated landfill(LRL) simulator and to the conditioned bioreactor landfill(CBL) simulator would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio.展开更多
A simulated landfill anaerobic bioreactor was used to characterize the anaerobic biodegradation and biogas generation of organic waste which was mainly composed of residuals of vegetables and foods. We investigated th...A simulated landfill anaerobic bioreactor was used to characterize the anaerobic biodegradation and biogas generation of organic waste which was mainly composed of residuals of vegetables and foods. We investigated the dynamics of the coenzyme F420 activity and determined correlations between biogas yields, methane yields, methane concentration and coenzyme F420 activity. The experiment was carded out under different conditions from control without any treatment, addition of Fe^3+, microorganism inoculation to a combination of Fe3+ addition and inoculation at a temperature of 36±2℃. The experiment was lasted 120 d and coenzyme F420 activity was analyzed using ultraviolet spectrophotornetry. Experimental results indicated that activity of the coenzyme F420 treated by Fe and microorganism inoculation increased substantially. The waste treated by inoculation had the greatest increase. When the waste was treated by Fe^3+, inoculation and the combination of Fe^3+ and inoculation, biogas yields increased by 46.9%, 132.6% and 153.1%, respectively; while the methane yields increased 4, 97 and 98 times. Methane concentration varied between 0 and 6% in the control reactor, from 0 to 14% for waste treated by the addition of Fe^3+, from 0 to 59% for waste treated by inoculation and from 0 to 63% for waste treated by Fe^3+ addition and inoculation. Correlations between coenzyme F420 activity and biogas production, methane production and methane concentration proved to be positively significant (p〈0.05), except for the control. Consequently, coenzyme F420 activity could be used as an index for monitoring the activity of methanogens during anaerobic biodegradation of the organic fraction of municipal solid waste.展开更多
Landfill has been recognized as the cheapest form for the final disposal of municipal solid waste and as such has been the most used method in the world. However, siting landfill is an extremely complex task mainly du...Landfill has been recognized as the cheapest form for the final disposal of municipal solid waste and as such has been the most used method in the world. However, siting landfill is an extremely complex task mainly due to the fact that the identification and selection process involves many factors and strict regulations. For proper identification and selection of appropriate sites for landfills careful and systematic procedures need to be adopted and followed. Wrong siting of landfill many result in environmental degradation and often time public opposition. In this study, attempts have been made to determine sites that are appropriate for landfill siting in Damaturu town Nigeria, by combining geographic information system (GIS) and a multi-criteria decision making method (MCDM) known as the analytic network process (ANP) for the determination of the relative importance weights of factors (criteria). The land suitability output is presented from less suitable to the most suitable areas. The final map produced show areas that are suitable for landfill siting. Based on the analysis fourteen sites were identified to fulfill the required criteria, however, only seven met the land availability criteria of twenty hectares and above. The results showed the efficacy of GIS and multi-criteria decision making method in decision making.展开更多
Biodegradation of waste in landfill is a slow process requiring decades for completion. Accelerated degradation of municipal refuse in modulated landfill environments may alleviate or eliminate pollution to the land, ...Biodegradation of waste in landfill is a slow process requiring decades for completion. Accelerated degradation of municipal refuse in modulated landfill environments may alleviate or eliminate pollution to the land, water and air. In this work, nineteen effective microorganisms (EMs) were isolated from old landfill refuse by enrichment culturing techniques and used for the inoculum of municipal refuse. The preliminary experiments demonstrate that a combination of EMs inoculation in landfill with leachate recycle resulted in increased rates of decomposition and faster process stability. The concentrations of COD, VFA and SO4^2- in digester with EMs inoculation and leachate recycle decreased more rapidly than others. Gas production from digester with EMs inoculation and leachate recycle commenced around 32 days, which is a week shorter than with leachate recycle only. And peak cumulative gas production was obtained much earlier in digester with EMs inoculation and leachate recycle (150 days) compared to 180 days with leachate recycle only. Moreover, in the first two months, the rate of settlement in digester with EMs inoculation and leachate recycle was more rapid than others.展开更多
Population growth associated with urban development in African cities is a key environmental concern in development programs. Indeed, urban areas are strongly impacted by the production of municipal waste, the managem...Population growth associated with urban development in African cities is a key environmental concern in development programs. Indeed, urban areas are strongly impacted by the production of municipal waste, the management of which remains problematic and is only stored in open dumps. This is the case in the city of Bonoua, a small town located 59 km east of Abidjan in the South Comoé region of C<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">ô</span>te d’Ivoire. The management of municipal waste in this town is crucial because all the mineral water sources are concentrated in this town. The objective of this study is to characterize and map the distribution of trace metal elements in the largest urban landfill in the city in order to propose an efficient strategy for rehabilitation into an urban park. Soil samples were collected from the entire site (landfill and surrounding soil) and from a control site. The total content of trace metals (Pb, Cd, Cr, and Zn) in the soil was analyzed by X-ray fluorescence spectrometry (XRF). Soil pollution was evaluated through enrichment factors, geoaccumulation indices and pollution indices. The results show that the calculated geoaccumulation indices and their distribution maps indicate a pollution of the site in these elements. The values of the PI higher than the unit reveal a pollution of the site in several elements. The levels of Pb, Cd, Cr and Zn are higher than the levels in the upper continental crust and in the control soil. The spatial distribution shows a significant accumulation of Pb, Cr and Zn on the landfill while Cd is concentrated in the surrounding soils. The calculated enrichment factors suggest an anthropogenic origin of the heavy metal at the study site. These results indicate polymetallic pollution by metals that can persist in the environment and affect human health.展开更多
Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In co...Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In contrast to the conventional landfill, this paper introduces a new technique named bioreactor landfill (BL). Mechanisms, operation conditions as well as the advantages and disadvantages of BL are also discussed in this paper.展开更多
The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the influence of the effective stress,chemical interactions,freeze-thaw cycles and temperature gradients.The changes of ...The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the influence of the effective stress,chemical interactions,freeze-thaw cycles and temperature gradients.The changes of void ratio caused by changes of effective stress have a direct linear effect on the hydraulic conductivity,regardless of the cation concentration or the thickness of the adsorbed layer.The hydraulic conductivity is related to the relative abundance of monovalent and divalent cation(RMD),and RMD has a great effect on the hydraulic conductivity in weak solution.The long-term susceptibility of GCLs to increased hydraulic conductivity as a response to repeated freeze-thaw cycling is minimal,which has been proved after 150 freeze-thaw cycles.The potential of desiccation cracking increases with the increasing temperature gradient and is related to the initial subsoil water content,the applied overburden stress,etc.展开更多
Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was compos...Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was composed of four zones: Phase I, II, Phase III, and SP. The surface of Phase I was fully covered and its conditions are better for surface emission measurements. As results concerning the Phase I zone, the geospatial means flux rates of CH4 (657 mg m-2 h l in 2017 and 1210 mg m 2 h_, in 2018, respectively) are measured higher than the tolerable value reported in literature. The emitted CH4 or C 02 have permitted to locate higher surface emissions which are related to the cover state. The calculated gas collection efficiency (27.4% in 2017 and 23.0% in 2018) is low compared to those reported for landfills integrating landfill gas (LFG) extraction system. The carbon footprint calculations (24,966 tC02-eq 2017 and 40,025 tC02-eq in 2018, respectively) shown that Polesgo's landfill is a significant source of greenhouse gases (GHG) and its important potential for organic recovery can contribute to reduce the carbon footprint.展开更多
基金funded by the Project Study on Key Issues of China City Carbon Emission Inventory (No. 41101500)supported by National Natural Science Foundation of China
文摘The methane(CH4) emissions from municipal solid waste(MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD(firstorder decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition,degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2,107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 Mt in 2007. Compared with the CH4 emissions of 2.20 Mt in 2005, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t.Jiangsu province ranks the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general,the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.
文摘Activity development of key groups of enzymes involved in municipal refuse decomposition was measured in laboratory landfill bioreactors with and without leachate recycling and inoculation for about 210 days. The results showed that the enzymes (amylase, protease, cellulase, lipase and pectinase) were present in fresh refuse but at low values and positively affected by leachate recycling and refuse inoculation. The total average of cellulase activity in digesters D3 operated with leachate recycling but no inoculation, D4 and D5 operated with leachate recycling and inoculation was much higher than that in digesters D1 and D2 without leachate recycling and inoculation by 88%—127%, 117%—162% and 64%—98%. The total average of protease activity was higher in digester D4 than that in digesters D1, D2, D3 and D5 by 63%, 39%, 24% and 24%, respectively, and the positive effect of leachate recycling and inoculation on protease activity of landfilled refuse mainly was at the first two months. The total average of amylase activity was higher in digesters D3, D4 and D5 than that in digesters D1 and D2 by 83%—132%, 96%—148% and 81%—129%. During the early phase of incubation, the stimulatory effect of inoculation on lipase activity was measured, but refuse moisture was the main factor affecting lipase activity of landfilled refuse. The inoculation, initial and continuous inoculation of microorganisms existing in leachate, was the mainly stimulatory factor affecting pectinase activity of landfilled refuse.
基金This work was supported by the National Science and Technology Supporting Program of China (No. 2006BAJ04A06, 2006BAC06B05) ;the National Natural Science Foundation of China (No. 50538080).
文摘Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills, this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N2O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N2O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N2O flux.
文摘The effects of components and their ratio of grouts on anti-seepage capability of clay-solidified grouting curtain and its permeability of heavy metal cations were investigated by permeating experiments, using reactive solute transport model to study the permeation of heavy metals (Cd2+, Pb2+ and Hg2+). The study of permeating for different mixture ratios of cement and clay indicates that hydraulic conductivity of clay-solidified grouting curtain with different ratios of solid to liquid or with the same ratio of solid to liquid but with different ratios of cement to clay is changed. The laboratory simulation test results also show that precipitates produced in heavy metal cation migration process in curtain block up water flowing passage which makes the hydraulic conductivity of the solution-permeated curtain decrease with the leakage time. The permeation velocities for different heavy metal cations vary with ionic concentration, exchange capacity and ion radius etc. The test results indicate that the permeation rapidity order of heavy metals cations in clay-solidified grouting curtain is Hg2+>Pb2+ in the same experimental circumstance. In addition, permeability for different mixture ratios and antisepsis capabilities of clay-solidified grouting curtain were studied in tests.
文摘Accidental collapse resulted from unstable factors is an important technological problem to be solved in sanitary landfill. Microbiological degradation of organic matters in landfilled solid waste are an important unstable factor. A landfill reactor was thus manufactured and installed to examine quantitative and population dynamics of microorganisms during degradation of landfilled solid waste. It was showed that unstable landfill can be reflected and indicated by microbiological features such as rapidly decreased growth amount of microorganisms, no detection of fungi and actinomyces, and changing the dominant population into methanogenic bacteria and Acinotobacter.
文摘Carbon dioxide, methane and nitrous oxide are the major Greenhouse Gases (GHG’s), which emit from landfill areas and contribute significantly to global warming. Moreover, that the global warming potential of methane is 21 times higher than that of carbon dioxide and it has highest generation (60%) than other gases. Therefore, there is immense concern for its abatement or utilization from landfill areas. Compared to the west, the composition of municipal solid waste (MSW) in developing countries has higher (40% - 60%) organic waste. This would have potential to emit higher GHG’s from per ton of MSW compared to developed world. Beside that landfills areas in India are not planned or en- gineered generally low lying open areas, where MSW is indiscriminate disposed. This leads to uncontrolled emission of trace gases, foul smell, bird menace, ground and surface water pollution etc. Due to scarcity of land in big cities, mu- nicipal authorities are using same landfill for nearly 10 - 20 years. Hence, the possibility of anaerobic emission of GHG’s further increases. In the present paper we had quantified the methane emission from three MSW landfill areas of Delhi i.e., Gazipur, Bhalswa and Okhla. The results showed that the range of methane emission various in winter from 12.94 to 58.41 and in Summer from 82.69 - 293 mg/m2/h in these landfill areas. The paper has also reviewed the literature on methane emission from India and the status of landfill areas in India.
基金Project(41072236)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(2009A027)supported by Youth Research Foundation of China University of Mining and Technology
文摘Based on the degradation characteristics of municipal solid waste(MSW)in China,the traditional anaerobic sequencing batch bioreactor landfill(ASBRL)was optimized,and an improved anaerobic sequencing batch bioreactor landfill(IASBRL)was put forward on the basis of leachate self-recirculation.By monitoring MSW composition,leachate characteristics variation and landfill gas(LFG)generation,the effect of IASBRL was comparatively studied by simulation landfill.Based on the adjusting,scouring and carrying effects of leachate self-recirculation,IASBRL can rapidly decrease Eh value to about-500mV and form a suitable biochemical environment for methanogens,which provides a precondition for stable cooperation between non-methanogens and methanogens.IASBRL can avoid the accumulation of organic acids,make VFA(volatile fatty acid)concentration and CODCr decrease along with the small range fluctuations,and form a stable decomposition-consumption synergy during MSW degradation,therefore,the hydrolysis rate of easy hydrolyze material reaches 71.2% in IASBRL.From the viewpoint of LFG resources in IASBRL,the cumulative LFG production increases to 2327.0L,CH4 mass fraction stabilizes at about 50%,and these provide a favorable precondition for LFG development.
文摘For quantitative estimation of the intra-layer porous structure in the initial stage of landfill formation with municipal solid waste incineration (MSWI) bottom ash, the water absorption of individual MSWI bottom ash particles was measured under still-water, degassed, and agitated conditions. The ratio of the water absorption rate found for the still-water procedure to the effective absorption capacity which was the one under degassing was 35.2%. In the water flow experiment of a column filled with MSWI bottom ash, the true density of the bottom ash was higher after water flow than before, which indicated that dissolution of the soluble components of the bottom ash particle surfaces resulted in a loss of apparent particle volume that more than offset the accompanying weight loss. The volume-based water absorption rate found for the bottom ash particles following 50 mL/h water flow through the column, as a ratio to the effective absorption capacity was about 51.8% of the effective absorption capacity. In a landfill layer comprised of MSWI bottom ash, it was suggested that some regions of the ash particle interiors underwent almost no contact with water.
文摘The objectives of this study are to determine the settlement and leachate generation from landfill lysimeters of municipal solid waste. Two identical lysimeters with a diameter and height of 0.70 m and 2.40 m were prepared, respectively. The lysimeters were operated with and without leachate recirculation treatment. The settlement and leachate generation were quantified daily. The analysis of settlement was conducted by using hyperbolic function and curve fitting. Based on the experiments result, it is observed that garbage pile settlement in lysimeter treated with leachate recirculation (L-2) is higher than without recirculation treatment (L-1) as showed by the hyperbolic function and curve fitting result. The ultimate settlement (S_wlt) for L-1 and L-2 that used hyperbolic function were 0.487 m and 0.53 m, respectively. Meanwhile (S_wlt) that using curve fitting resulted 0.74 m, and 0.68 m for L-1 and L-2, respectively. The lysimeter which treated with leachate recirculation treatment showed a higher leachate height than without the treatment.
基金Financial support provided by the National Basic Research Program of China(973 Project)(Grant No.2012CB719806)
文摘Engineering properties of municipal solid waste (MSW) depend largely on the waste's initial compositionand degree of degradation. MSWs in developing countries usually have a high kitchen waste content(called HKWC MSW). After comparing and analyzing the laboratory and field test results of physicalcomposition, hydraulic properties, gas generation and gas permeability, and mechanical properties forHKWC MSW and low kitchen waste content MSW (called LKWC MSW), the following findings wereobtained: (1) HKWC MSW has a higher initial water content (IWC) than LKWC MSW, but the field capacitiesof decomposed HKWC and LKWC MSWs are similar; (2) the hydraulic conductivity and gaspermeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3)compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG) generation rate but a shorterduration and a lower potential capacity; (4) the primary compression feature for decomposed HKWCMSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation ofHKWC MSW is greater than that of LKWC MSW; and (5) the shear strength of HKWC MSW changessignificantly with time and strain. Based on the differences of engineering properties between these twokinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including highleachate production, high leachate mounds, low LFG collection efficiency, large settlement and slopestability problem, and corresponding advice for the management and design of HKWC MSW landfills wasrecommended.
文摘Proper solid waste disposal is an important socioeconomic concern for all developing countries.Municipalities have their own policies,individual approaches and methods to manage the solid wastes.They consider wastelands outside the urban area as the best suitable for the solid waste disposal.Such improper site selection will create morphological changes that lead to environmental hazards in the urban and its surrounding areas.In this research,the site selection for urban solid waste disposal in the Coimbatore district used geographical information system(GIS)and multi-criteria decision analysis(MCDA).Thematic layers of lineament density,landuse/landcover,population density,groundwater depth,drainage density,slope,soil texture,geology and geomorphology were considered as primary criteria and weights for criteria,and sub-criteria were assigned by MCDA analysis.The resultant weight score was validated by consistency ratio so that the efficiency of the selected criteria was justified.The overlay analysis in GIS environment provides 17 potential zones in Coimbatore district,among which,four suitable sites were screened and refined with the help of field investigation and visual interpretation of satellite image.The result of landfill suitability map shows the effectiveness of the proposed method.
文摘Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste(MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature decomposing MSW. The results of waste biodegradation were compared with that of the leachate-recirculated landfill simulator and conservative sanitary landfill simulator. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown. An obvious enhancement of effective disposal from conservative sanitary landfill(CSL) simulator, to the leachate-recirculated landfill(LRL) simulator and to the conditioned bioreactor landfill(CBL) simulator would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio.
基金Projects 40372069 supported by the National Natural Science Foundation of ChinaNCET-05-0479 by the Program for New Century Excellent Talents in University0F4506 by the Science and Technology Foundation of China University of Mining and Technology
文摘A simulated landfill anaerobic bioreactor was used to characterize the anaerobic biodegradation and biogas generation of organic waste which was mainly composed of residuals of vegetables and foods. We investigated the dynamics of the coenzyme F420 activity and determined correlations between biogas yields, methane yields, methane concentration and coenzyme F420 activity. The experiment was carded out under different conditions from control without any treatment, addition of Fe^3+, microorganism inoculation to a combination of Fe3+ addition and inoculation at a temperature of 36±2℃. The experiment was lasted 120 d and coenzyme F420 activity was analyzed using ultraviolet spectrophotornetry. Experimental results indicated that activity of the coenzyme F420 treated by Fe and microorganism inoculation increased substantially. The waste treated by inoculation had the greatest increase. When the waste was treated by Fe^3+, inoculation and the combination of Fe^3+ and inoculation, biogas yields increased by 46.9%, 132.6% and 153.1%, respectively; while the methane yields increased 4, 97 and 98 times. Methane concentration varied between 0 and 6% in the control reactor, from 0 to 14% for waste treated by the addition of Fe^3+, from 0 to 59% for waste treated by inoculation and from 0 to 63% for waste treated by Fe^3+ addition and inoculation. Correlations between coenzyme F420 activity and biogas production, methane production and methane concentration proved to be positively significant (p〈0.05), except for the control. Consequently, coenzyme F420 activity could be used as an index for monitoring the activity of methanogens during anaerobic biodegradation of the organic fraction of municipal solid waste.
文摘Landfill has been recognized as the cheapest form for the final disposal of municipal solid waste and as such has been the most used method in the world. However, siting landfill is an extremely complex task mainly due to the fact that the identification and selection process involves many factors and strict regulations. For proper identification and selection of appropriate sites for landfills careful and systematic procedures need to be adopted and followed. Wrong siting of landfill many result in environmental degradation and often time public opposition. In this study, attempts have been made to determine sites that are appropriate for landfill siting in Damaturu town Nigeria, by combining geographic information system (GIS) and a multi-criteria decision making method (MCDM) known as the analytic network process (ANP) for the determination of the relative importance weights of factors (criteria). The land suitability output is presented from less suitable to the most suitable areas. The final map produced show areas that are suitable for landfill siting. Based on the analysis fourteen sites were identified to fulfill the required criteria, however, only seven met the land availability criteria of twenty hectares and above. The results showed the efficacy of GIS and multi-criteria decision making method in decision making.
基金Supported by the National Natural Science Foundation of China (No. 59808012) and Zhejiang Province (No. 599127).
文摘Biodegradation of waste in landfill is a slow process requiring decades for completion. Accelerated degradation of municipal refuse in modulated landfill environments may alleviate or eliminate pollution to the land, water and air. In this work, nineteen effective microorganisms (EMs) were isolated from old landfill refuse by enrichment culturing techniques and used for the inoculum of municipal refuse. The preliminary experiments demonstrate that a combination of EMs inoculation in landfill with leachate recycle resulted in increased rates of decomposition and faster process stability. The concentrations of COD, VFA and SO4^2- in digester with EMs inoculation and leachate recycle decreased more rapidly than others. Gas production from digester with EMs inoculation and leachate recycle commenced around 32 days, which is a week shorter than with leachate recycle only. And peak cumulative gas production was obtained much earlier in digester with EMs inoculation and leachate recycle (150 days) compared to 180 days with leachate recycle only. Moreover, in the first two months, the rate of settlement in digester with EMs inoculation and leachate recycle was more rapid than others.
文摘Population growth associated with urban development in African cities is a key environmental concern in development programs. Indeed, urban areas are strongly impacted by the production of municipal waste, the management of which remains problematic and is only stored in open dumps. This is the case in the city of Bonoua, a small town located 59 km east of Abidjan in the South Comoé region of C<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">ô</span>te d’Ivoire. The management of municipal waste in this town is crucial because all the mineral water sources are concentrated in this town. The objective of this study is to characterize and map the distribution of trace metal elements in the largest urban landfill in the city in order to propose an efficient strategy for rehabilitation into an urban park. Soil samples were collected from the entire site (landfill and surrounding soil) and from a control site. The total content of trace metals (Pb, Cd, Cr, and Zn) in the soil was analyzed by X-ray fluorescence spectrometry (XRF). Soil pollution was evaluated through enrichment factors, geoaccumulation indices and pollution indices. The results show that the calculated geoaccumulation indices and their distribution maps indicate a pollution of the site in these elements. The values of the PI higher than the unit reveal a pollution of the site in several elements. The levels of Pb, Cd, Cr and Zn are higher than the levels in the upper continental crust and in the control soil. The spatial distribution shows a significant accumulation of Pb, Cr and Zn on the landfill while Cd is concentrated in the surrounding soils. The calculated enrichment factors suggest an anthropogenic origin of the heavy metal at the study site. These results indicate polymetallic pollution by metals that can persist in the environment and affect human health.
文摘Following the population expansion, there is a growing threat brought by municipal solid waste (MSW) against environment and human health. Sanitary landfill is the most important method of MSW disposal in China. In contrast to the conventional landfill, this paper introduces a new technique named bioreactor landfill (BL). Mechanisms, operation conditions as well as the advantages and disadvantages of BL are also discussed in this paper.
文摘The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the influence of the effective stress,chemical interactions,freeze-thaw cycles and temperature gradients.The changes of void ratio caused by changes of effective stress have a direct linear effect on the hydraulic conductivity,regardless of the cation concentration or the thickness of the adsorbed layer.The hydraulic conductivity is related to the relative abundance of monovalent and divalent cation(RMD),and RMD has a great effect on the hydraulic conductivity in weak solution.The long-term susceptibility of GCLs to increased hydraulic conductivity as a response to repeated freeze-thaw cycling is minimal,which has been proved after 150 freeze-thaw cycles.The potential of desiccation cracking increases with the increasing temperature gradient and is related to the initial subsoil water content,the applied overburden stress,etc.
文摘Methane (CH4) and carbon dioxide (C02) surface emissions from Polesgo's landfill (Ouagadougou, Burkina Faso) were measured using the static chamber technique in 2017 and 2018. The Polesgo's landfill was composed of four zones: Phase I, II, Phase III, and SP. The surface of Phase I was fully covered and its conditions are better for surface emission measurements. As results concerning the Phase I zone, the geospatial means flux rates of CH4 (657 mg m-2 h l in 2017 and 1210 mg m 2 h_, in 2018, respectively) are measured higher than the tolerable value reported in literature. The emitted CH4 or C 02 have permitted to locate higher surface emissions which are related to the cover state. The calculated gas collection efficiency (27.4% in 2017 and 23.0% in 2018) is low compared to those reported for landfills integrating landfill gas (LFG) extraction system. The carbon footprint calculations (24,966 tC02-eq 2017 and 40,025 tC02-eq in 2018, respectively) shown that Polesgo's landfill is a significant source of greenhouse gases (GHG) and its important potential for organic recovery can contribute to reduce the carbon footprint.