Objective This study was conducted to optimize the operational parameters of anaerobic-anoxic-oxic (A^2/O) processes to reduce the toxicity of municipal wastewater and evaluate its ability to reduce toxicity. Method...Objective This study was conducted to optimize the operational parameters of anaerobic-anoxic-oxic (A^2/O) processes to reduce the toxicity of municipal wastewater and evaluate its ability to reduce toxicity. Methods A luminescent bacterium toxicity bioassay was employed to assess the toxicity of influent and effluent of each reactor in the A2/O system. Results The optimum operational parameters for toxicity reduction were as follows: anaerobic hydraulic retention time (HRT) = 2.8 h, anoxic HRT = 2.8 h, aerobic HRT = 6.9 h, sludge retention time (SRT) = 15 days and internal recycle ratio (IRR) = 100%. An important toxicity reduction (%) was observed in the optimized A2/O process, even when the toluene concentration of the influent was 120.7 mg·L^-1. Conclusions The toxicity of municipal wastewater was reduced significantly during the A^2/O process. A^2/O process can be used for toxicity reduction of municipal wastewater under toxic-shock loading.展开更多
A fuzzy super-twisting algorithm sliding mode controller is developed for the dissolved oxygen concentration in municipal wastewater nitrification process. First, a fuzzy neural network(FNN) model is designed to appro...A fuzzy super-twisting algorithm sliding mode controller is developed for the dissolved oxygen concentration in municipal wastewater nitrification process. First, a fuzzy neural network(FNN) model is designed to approach the oxygen dynamics with unmeasurable disturbances, then the established model consists of the nominal system model and the modelling error. Second,based on the FNN model, a super-twisting sliding mode controller is employed to stabilize the nominal system and to suppress the modelling error. Moreover, the stability of the system is investigated and an adaption law is applied to ensure the robustness of the closed-loop system. Finally, the comparison experiments on benchmark simulation model no. 2(BSM2) of wastewater treatment show the advantages of the proposed method in multiple-units oxygen concentration control.展开更多
This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the...This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid(MLSS) was 2436 mg.L-1 and 2385 mg.L-1 in co-precipitation phosphorus removal process(CPR) and biological phosphorous removal process(BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index(SVI) and sludge specific resistance of BPR were 126 ml.g-1 and 11.7×1012 m.kg-1,respectively,while those of CPR were only 98 ml.g-1 and 7.1×1012 m.kg-1,indicating that CPR chemical could improve sludge settling and dewatering.展开更多
Effluent organic matter(Ef OM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans.This study evaluated the removal and transformation of chromophoric...Effluent organic matter(Ef OM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans.This study evaluated the removal and transformation of chromophoric dissolved organic matter(CDOM) and fluorescent dissolved organic matter(FDOM) in a full-scale wastewater treatment plant under different seasons.The results showed that bio-treatment was found to be more efficient in removing bulk DOM(in term of dissolved organic carbon,DOC) than CDOM and FDOM,which was contrary to the disinfection process.CDOM and FDOM were selectively removed at various stages during the treatment.Typically,the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process,whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes.Overall,the performance of the WWTP was weak in terms of CDOM and FDOM removal,resulting in enrichment of CDOM and FDOM in effluent.Moreover,the total removal of the bulk DOM(P 〈 0.05) and the protein-like FDOM(P 〈 0.05) displayed a significant seasonal variation,with higher removal efficiencies in summer,whereas removal of CDOM and the humic-like FDOM showed little differences between summer and winter.In all,the results provide useful information for understanding the fate and transformation of DOM,illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality.展开更多
基金supported by the National Science Foundation Project grants of China(No.50878165,No.21007010)the Program for New Century Excellent Talents in University(NCET-08-0403)+4 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20090075120007)the Shanghai Committee of Science and Technology,China(No.09230500200)the Fundamental Research Funds for the Central Universities of China(No.10D11308)the Key Special Program on the S&T for the Pollution Control and Treatment of Water Bodies(No. 2008ZX07316-003)the Shanghai Leading Academic Discipline Project (No.B604)
文摘Objective This study was conducted to optimize the operational parameters of anaerobic-anoxic-oxic (A^2/O) processes to reduce the toxicity of municipal wastewater and evaluate its ability to reduce toxicity. Methods A luminescent bacterium toxicity bioassay was employed to assess the toxicity of influent and effluent of each reactor in the A2/O system. Results The optimum operational parameters for toxicity reduction were as follows: anaerobic hydraulic retention time (HRT) = 2.8 h, anoxic HRT = 2.8 h, aerobic HRT = 6.9 h, sludge retention time (SRT) = 15 days and internal recycle ratio (IRR) = 100%. An important toxicity reduction (%) was observed in the optimized A2/O process, even when the toluene concentration of the influent was 120.7 mg·L^-1. Conclusions The toxicity of municipal wastewater was reduced significantly during the A^2/O process. A^2/O process can be used for toxicity reduction of municipal wastewater under toxic-shock loading.
基金supported by the National Nutural Science Foundation of China (Grant Nos. 61890930-5, 61903010, 62021003 and 62125301)the National Key Research and Development Project (Grant No.2018YFC1900800-5)+3 种基金Beijing Outstanding Young Scientist Program (Grant No. BJJWZYJH01201910005020)Beijing Natural Science Foundation(Grant No. KZ202110005009)CAAI-Huawei MindSpore Open Fund(Grant No. CAAIXSJLJJ-2021-017A)Beijing Postdoctoral Research Foundation
文摘A fuzzy super-twisting algorithm sliding mode controller is developed for the dissolved oxygen concentration in municipal wastewater nitrification process. First, a fuzzy neural network(FNN) model is designed to approach the oxygen dynamics with unmeasurable disturbances, then the established model consists of the nominal system model and the modelling error. Second,based on the FNN model, a super-twisting sliding mode controller is employed to stabilize the nominal system and to suppress the modelling error. Moreover, the stability of the system is investigated and an adaption law is applied to ensure the robustness of the closed-loop system. Finally, the comparison experiments on benchmark simulation model no. 2(BSM2) of wastewater treatment show the advantages of the proposed method in multiple-units oxygen concentration control.
基金Supported by the Major National Water Sci-Tech Projects of China(2009ZX07210-009)the Department of Environmental Protection of Shandong Province(2006032,2060403)
文摘This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid(MLSS) was 2436 mg.L-1 and 2385 mg.L-1 in co-precipitation phosphorus removal process(CPR) and biological phosphorous removal process(BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index(SVI) and sludge specific resistance of BPR were 126 ml.g-1 and 11.7×1012 m.kg-1,respectively,while those of CPR were only 98 ml.g-1 and 7.1×1012 m.kg-1,indicating that CPR chemical could improve sludge settling and dewatering.
基金supported by the National Natural Science Foundation of China(No.51478487)
文摘Effluent organic matter(Ef OM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans.This study evaluated the removal and transformation of chromophoric dissolved organic matter(CDOM) and fluorescent dissolved organic matter(FDOM) in a full-scale wastewater treatment plant under different seasons.The results showed that bio-treatment was found to be more efficient in removing bulk DOM(in term of dissolved organic carbon,DOC) than CDOM and FDOM,which was contrary to the disinfection process.CDOM and FDOM were selectively removed at various stages during the treatment.Typically,the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process,whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes.Overall,the performance of the WWTP was weak in terms of CDOM and FDOM removal,resulting in enrichment of CDOM and FDOM in effluent.Moreover,the total removal of the bulk DOM(P 〈 0.05) and the protein-like FDOM(P 〈 0.05) displayed a significant seasonal variation,with higher removal efficiencies in summer,whereas removal of CDOM and the humic-like FDOM showed little differences between summer and winter.In all,the results provide useful information for understanding the fate and transformation of DOM,illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality.