Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is...Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is all the more important when elements composed of brittle materials are exposed to dynamic environments,resulting in catastrophic fatigue failures.The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables.Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the reliability and safety of engineering structures subjected to cyclic loading.Crack growth is modelled using a phase-field approach within a finite element framework.For modelling fatigue,fracture resistance is progressively degraded by modifying the regularised free energy functional using a fatigue degradation function.Number of cycles to failure is treated as the dependent variable of interest and is estimated within acceptable limits due to the randomness in independent properties.Multiple 2D benchmark problems are solved to demonstrate the ability of this approach to predict the dependent variable responses with significantly fewer simulations than the Monte Carlo method.This proposed approach can accurately predict results typically obtained through 105 or more runs in Monte Carlo simulations with a reduction of up to three orders of magnitude in required runs.The independent random variables’sensitivity to the system response is determined using Sobol’indices.The proposed approach has low computational overhead and can be useful for computationally intensive problems requiring rapid decision-making in sensitive applications like aerospace,nuclear and biomedical engineering.The technique does not require reformulating existing finite element code and can perform the stochastic study by direct pre/post-processing.展开更多
Most overseas tourists get the first impression of the place they will visit from tourist materials.Therefore,good translations of tourist materials become one of the key factors which attract overseas tourists.The tr...Most overseas tourists get the first impression of the place they will visit from tourist materials.Therefore,good translations of tourist materials become one of the key factors which attract overseas tourists.The translating techniques,such as Transcription,Addition,Omission,Rewriting,can help translators produce good translations.展开更多
In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux densi...In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.展开更多
A new breeding program"Creating new middle breedingmaterials by utilizing new techniques",cooperated byChina National Rice Research Institute (CNRRI)andJapan International Research Center for Agricultural Sc...A new breeding program"Creating new middle breedingmaterials by utilizing new techniques",cooperated byChina National Rice Research Institute (CNRRI)andJapan International Research Center for Agricultural Sci-ence(JIRCAS)",started in Hangzhou,China in 1999.展开更多
With the application of new techniques, materials and technologies in West East Gas Transportation Pipeline (WEGTP) project, the design concept of domestic pipeline industrial construction has been updated, speeding u...With the application of new techniques, materials and technologies in West East Gas Transportation Pipeline (WEGTP) project, the design concept of domestic pipeline industrial construction has been updated, speeding up the development and improvement of the strength as a whole in aspects of smelting industry, pipe fabrication, pipeline construction and equipment manufacture,making China’s pipeline industry catch up with the trend of development of the world advanced level.展开更多
Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure...Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure–activity relationship between the microstructural features of pseudocapacitive materials and their electrochemical performance on the atomic scale is the key to build high-performance capacitor-type devices containing ideal pseudocapacitance effect.Currently,the high brightness(flux),and spectral and coherent nature of synchrotron X-ray analytical techniques make it a powerful tool for probing the structure–property relationship of pseudocapacitive materials.Herein,we report a comprehensive and systematic review of four typical characterization techniques(synchrotron X-ray diffraction,pair distribution function[PDF]analysis,soft X-ray absorption spectroscopy,and hard X-ray absorption spectroscopy)for the study of pseudocapacitance mechanisms.In addition,we offered significant insights for understanding and identifying pseudocapacitance mechanisms(surface redox pseudocapacitance,intercalation pseudocapacitance,and the extrinsic pseudocapacitance phenomenon in battery materials)by combining in situ hard XAS and electrochemical analyses.Finally,a perspective for further depth of understanding into the pseudocapacitance mechanism using synchrotron X-ray analytical techniques is proposed.展开更多
This paper proposed an innovative teaching approach based on finite element technique(FET)to improve the understanding of material mechanics.A teaching experiment was conducted using pure bending deformation of a beam...This paper proposed an innovative teaching approach based on finite element technique(FET)to improve the understanding of material mechanics.A teaching experiment was conducted using pure bending deformation of a beam as an example,and the deformation and stress distribution of the beam were analyzed using FET.The results showed that using color stress nephograms and color U nephograms can improve students’learning outcomes in mechanics classroom.The high levels of satisfaction and interest in incorporating new techniques into the classroom suggest that there is a need to explore and develop innovative teaching methods in mechanics and related fields.This approach may inspire educators to develop more effective ways of teaching material mechanics,and our research can contribute to the advancement of mechanics education.展开更多
Background: The accuracy of the final prosthesis is affected by the final impression technique and master cast production. The aim of the present study was to evaluate the effect of the functional impression technique...Background: The accuracy of the final prosthesis is affected by the final impression technique and master cast production. The aim of the present study was to evaluate the effect of the functional impression technique with various impression materials on the surface characteristic of dental stone casts and their clinical effect on the retention of complete dentures. Method: Specimens of three impression materials/stone casts were fabricated. The specimens of the impression materials/stone casts were divided into three equal groups (I, II, and III). The impression materials used were as follows: tissue conditioner group (I), zinc oxide (ZEO) (group II) and poly (vinyl siloxane) (PVS) (group III). Cylindrical split aluminium moulds were designed to receive the impression materials and the stone mixture. The surface roughness of the stone cast specimens of the three groups (I, II, and III) was measured with a surface profilometer and analyzed by a scanning electron microscope. A clinical study included five severely resorbed mandibular edentulous alveolar ridges and edentulous maxillary arches. Each subject received three heat-cured acrylic resin dentures, fabricated using the functional impression technique. The three dentures were identical except for the different impression materials used from Groups I, II and III. The retentive force of each denture for each subject was measured. Result: The results of this study revealed that the mean value of surface roughness of the stone cast surface of group I was higher than group II and group III. A statistically significant difference was observed in surface roughness and the retentive dislodging force between the three studied groups. Although using a tissue conditioner as a functional impression material led to a high level of surface roughness and good retention, it could not produce the same smooth surface quality of PVS or ZEO. These data were supported by SEM analysis. The complete dentures for these patients require important oral and denture hygiene care. Conclusion: Complete dentures made using functional impression technique with PVC as a final impression material are more comfortable, retentive and stable.展开更多
In recent times,solar energy has become one of the largest available sources of renewable energy at our disposal.However,the design of highly efficient solar cells is increasingly becoming crucial as there has been a ...In recent times,solar energy has become one of the largest available sources of renewable energy at our disposal.However,the design of highly efficient solar cells is increasingly becoming crucial as there has been a surge for economically viable alternative energy sources with the lowest cost.Significant advances have been made through different routes to make photovoltaic(PV)/solar technologies economically viable,eco-friendly and consequently scalable.As a result,cellulose nanomaterials have become one of the emerging technologies in this regard because of the advantages of high-value bio-based nanostructured materials,such as their abundance and sustainability.Nanocellulose-based photoactive nanocomposite materials can be made by integrating conducting photoactive and electroconductive materials with hydrophilic biocompatible cellulose.Inorganic nanoparticles,such as graphene/reduced graphene oxide cadmium sulphide quantum dots,amongst others,can be introduced into the nanocellulose matrix and can be applied either as charge transporters or photoactive materials in different types of solar cells.Thus,in this review,we highlight the optoelectronic properties of different photoactive materials,particularly nanocellulose-based graphene nanocomposites;their efficiencies and drawbacks were X-rayed.The effect of doping each PV material on the PV performance is also discussed.It is anticipated that the novel material would result in a reduction in the cost of solar cells,jointly enhancing their efficacy in generating environmentally friendly electricity.Since the fabrication techniques and equipment play a crucial role in the development of solar cells,the fabrication techniques of bulk-heterojunction(BHJ)cells containing a nanocellulose-based graphene composite and case studies of already fabricated BHJ PV cells with nanocellulose-based graphene composite are discussed.展开更多
Thermal property is one of the most important properties of light-emitting diode (LED). Thermal property of LED packaging material determines the heat dissipations of the phosphor and the chip surface, accordingly h...Thermal property is one of the most important properties of light-emitting diode (LED). Thermal property of LED packaging material determines the heat dissipations of the phosphor and the chip surface, accordingly having an influence on the light-emitting efficiency and the life-span of the device. In this paper, photoacoustic piezoelectric (PAPE) technique has been employed to investigate the thermal properties of polyvinyl alcohol (]?VA) and silicon dioxide, which are the new and the traditional packaging materials in white LED, respectively. Firstly, the theory of PAPE technique has been developed for two-layer model in order to investigate soft materials; secondly, the experimental system has been set up and adjusted by measuring the reference sample; thirdly, the thermal diffusivities of PVA and silicon dioxide are measured and analysed. The experimental results show that PVA has a higher thermal diffusivity than silicon dioxide and is a better packaging material in the sense of thermal diffusivity for white LED.展开更多
The problem of a periodic array of parallel cracks in a homogeneous piezoelectric strip bonded to a functionally graded piezoelectric material is investigated for inhomogeneous continuum. It is assumed that the materi...The problem of a periodic array of parallel cracks in a homogeneous piezoelectric strip bonded to a functionally graded piezoelectric material is investigated for inhomogeneous continuum. It is assumed that the material inhomogeneity is represented as the spatial variation of the shear modulus in the form of an exponential function along the direction of cracks. The mixed boundary value problem is reduced to a singular integral equation by applying the Fourier transform, and the singular integral equation is solved numerically by using the Gauss-Chebyshev integration technique. Numerical results are obtained to illustrate the variations of the stress intensity factors as a function of the crack periodicity for different values of the material inhomogeneity.展开更多
The analytical electron microscopy has been used to characterize the morphology,structure and composition of the nanostructured material of Sn- Bi alloy prepared by a modified electrohydrodynamic technique. The electr...The analytical electron microscopy has been used to characterize the morphology,structure and composition of the nanostructured material of Sn- Bi alloy prepared by a modified electrohydrodynamic technique. The electron diffraction pattern and the corresponding contrast image for the discrete particles with a diameter smaller than 4 nm have been obtained.It is shown that the nanocrystalline Sn-Bi alloy particles comprise a single crystal of Bi-containing β-Sn solid solution or of Sn-containing Bi solid solution. A direct preparation procedure of the samples during the electrohydrodynamic rapid solidification process has been developed for electron microscopic observation.展开更多
At present,two-dimensional(2D)materials have shown great application potential in numerous fields based on their physical chemical and electronic properties.Raman spectroscopy and de-rivative techniques are effective ...At present,two-dimensional(2D)materials have shown great application potential in numerous fields based on their physical chemical and electronic properties.Raman spectroscopy and de-rivative techniques are effective tools for characterizing 2D materials.Raman spectroscopy conveys lots of knowledge on 2D materials,including layer number,doping type,strain and interlayer coupling.This review summarized advanced applications of Raman spectroscopy in 2D materials.The challenges and possible applied directions of Raman spectroscopy to 2D materials are discussed in detail.展开更多
One of the major challenges in designing and fabricating Spintronic devices is the choice of both, Materials and the Technology, along with understanding the intricacies of the Designing aspects. In this communication...One of the major challenges in designing and fabricating Spintronic devices is the choice of both, Materials and the Technology, along with understanding the intricacies of the Designing aspects. In this communication, we have attempted to briefly discuss these factors, with an aim to draw the attention of the Materials Scientists and Technologists to this serious challenge, in the direction of which, though a lot of research and development work has been done, still needs more concerted efforts to be made in order to make the Spintronic devices that can offer good efficiency for maximizing their usefulness.展开更多
A novel technique of Moveable Reduction Bed Hydride Generator(MRBHG)was applied tohe hydride generation or cold vapor generation of As,Se,Ge,and Hg existing In TraditionalChinese Medicinal Material(TCM).The si...A novel technique of Moveable Reduction Bed Hydride Generator(MRBHG)was applied tohe hydride generation or cold vapor generation of As,Se,Ge,and Hg existing In TraditionalChinese Medicinal Material(TCM).The simultaneous determination of the multi-elements wasperformed with ICP-MS.A solid reduction system involving the use of potassiumtetraborohydride and tartaric acid was applied to generating metal hydride or cold vaporefficiently.The factors affecting the metal cold vapor generation were studied.The mainadvantage of the technique is that only a 4μL volume of sample was required for the cold vapor展开更多
Granular wastes have negative effects on the environment due to contamination. On the other hand, stony components in granular wastes have a potential good perspectives for utilization in civil engineering works as se...Granular wastes have negative effects on the environment due to contamination. On the other hand, stony components in granular wastes have a potential good perspectives for utilization in civil engineering works as secondary raw building materials. To reuse such materials without environmental risks, all contaminants must be removed or reduced to an acceptable level. Therefore liberation of materials is an important step in waste treatment. For this purpose, separation and cleansing techniques are suitable. Based on the analysis of contaminants in wastes, it is discussed how to select suitable techniques. The rules for technique selection and processes for quality improvement are set up. To evaluate the environmental quality and technical quality of output products, it is necessary to check leaching behaviours and physical properties.展开更多
The problem of an anti-plane Griffith crack moving along the interface of dissimilar piezoelectric materials is solved by using the integral transform technique. It is shown from the result that the intensity factors ...The problem of an anti-plane Griffith crack moving along the interface of dissimilar piezoelectric materials is solved by using the integral transform technique. It is shown from the result that the intensity factors of anti-plane stress and electric displacement around the crack tip are dependent on the speed of the Griffith crack as well as the material coefficients. When the two piezoelectric materials are identical, the present result will be reduced to the result far the problem of an anti-plane moving Griffith crack in homogeneous piezoelectric materials.展开更多
The traditional alumina-silicate raw materials, for example, clays, in the precalcining technique of cement production, have been replaced by low grade and high silica content sandstones, shales, and industrial waste ...The traditional alumina-silicate raw materials, for example, clays, in the precalcining technique of cement production, have been replaced by low grade and high silica content sandstones, shales, and industrial waste residues, including fly ashes, slag, and others. The results are the change of compositions and characteristics of raw materials applied and a great effect on cement calcination process and clinker formation. In this work, the cement clinker formation process of different alumina-silicate raw materials to replace clay raw material was studied by chemical analysis, X-ray diffraction, differential thermal analysis, and high temperature microscope based on the characteristics of the alumina-silicate raw materials. The formation heat of the clinker was determined by the acid dissolution method. Influence of different alumina-silicate raw materials on the clinker burnability and formation process was studied. The results show that the changing of alumina- silicate raw materials, especially using industrial waste residues, can reduce the formation temperature of high temperature liquid phases, improve the burnability of raw materials, reduce the formation temperature and formation heat of clinker. And this study also observed the formation temperature and transformation of high temperature liquid phases in the heating process of raw materials by high temperature microscope.展开更多
An accurate evaluation of strongly singular domain integral appearing in the stress representation formula is a crucial problem in the stress analysis of functionally graded materials using boundary element method.To ...An accurate evaluation of strongly singular domain integral appearing in the stress representation formula is a crucial problem in the stress analysis of functionally graded materials using boundary element method.To solve this problem,a singularity separation technique is presented in the paper to split the singular integral into regular and singular parts by subtracting and adding a singular term.The singular domain integral is transformed into a boundary integral using the radial integration method.Analytical expressions of the radial integrals are obtained for two commonly used shear moduli varying with spatial coordinates.The regular domain integral,after expressing the displacements in terms of the radial basis functions,is also transformed to the boundary using the radial integration method.Finally,a boundary element method without internal cells is established for computing the stresses at internal nodes of the functionally graded materials with varying shear modulus.展开更多
The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-dry...The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-drying (FD),low pressure drying (LPD),high temperature drying (HTD) and chemical modification & ambient drying (CMD) techniques.Observation under pore distribution and structural properties showed that CMD technique leads to homogenous mesoporous silica material with specific surface area of 745 m2/g,and the average pore size around 20 nm,while LPD and HTD result in loosely packed particles with non-isotropic aggregation pattern.The specific surface areas of LPD and HTD samples are 419 and 513 m2/g respectively,and the pore size distribution of the samples are observed distributing widely in range of 10-100 nm.Freeze drying method is a new but prospective way to prepare mesoporous silica.The specific area of FD sample is around 500 m2/g.By the comparison for the properties of the gels,this paper wants to induce a further interest in finding a proper method to synthesize the porous silica gels for low price use.展开更多
文摘Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is all the more important when elements composed of brittle materials are exposed to dynamic environments,resulting in catastrophic fatigue failures.The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables.Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the reliability and safety of engineering structures subjected to cyclic loading.Crack growth is modelled using a phase-field approach within a finite element framework.For modelling fatigue,fracture resistance is progressively degraded by modifying the regularised free energy functional using a fatigue degradation function.Number of cycles to failure is treated as the dependent variable of interest and is estimated within acceptable limits due to the randomness in independent properties.Multiple 2D benchmark problems are solved to demonstrate the ability of this approach to predict the dependent variable responses with significantly fewer simulations than the Monte Carlo method.This proposed approach can accurately predict results typically obtained through 105 or more runs in Monte Carlo simulations with a reduction of up to three orders of magnitude in required runs.The independent random variables’sensitivity to the system response is determined using Sobol’indices.The proposed approach has low computational overhead and can be useful for computationally intensive problems requiring rapid decision-making in sensitive applications like aerospace,nuclear and biomedical engineering.The technique does not require reformulating existing finite element code and can perform the stochastic study by direct pre/post-processing.
文摘Most overseas tourists get the first impression of the place they will visit from tourist materials.Therefore,good translations of tourist materials become one of the key factors which attract overseas tourists.The translating techniques,such as Transcription,Addition,Omission,Rewriting,can help translators produce good translations.
文摘In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.
文摘A new breeding program"Creating new middle breedingmaterials by utilizing new techniques",cooperated byChina National Rice Research Institute (CNRRI)andJapan International Research Center for Agricultural Sci-ence(JIRCAS)",started in Hangzhou,China in 1999.
文摘With the application of new techniques, materials and technologies in West East Gas Transportation Pipeline (WEGTP) project, the design concept of domestic pipeline industrial construction has been updated, speeding up the development and improvement of the strength as a whole in aspects of smelting industry, pipe fabrication, pipeline construction and equipment manufacture,making China’s pipeline industry catch up with the trend of development of the world advanced level.
基金financialy supported by National Key R&D Program of China(2022YFB2402600)the National Natural Science Foundation of China(22279166)+1 种基金the Research Start-up Funds from Sun Yat-Sen University(200306)the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(22qntd0101 and 22dfx01)
文摘Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure–activity relationship between the microstructural features of pseudocapacitive materials and their electrochemical performance on the atomic scale is the key to build high-performance capacitor-type devices containing ideal pseudocapacitance effect.Currently,the high brightness(flux),and spectral and coherent nature of synchrotron X-ray analytical techniques make it a powerful tool for probing the structure–property relationship of pseudocapacitive materials.Herein,we report a comprehensive and systematic review of four typical characterization techniques(synchrotron X-ray diffraction,pair distribution function[PDF]analysis,soft X-ray absorption spectroscopy,and hard X-ray absorption spectroscopy)for the study of pseudocapacitance mechanisms.In addition,we offered significant insights for understanding and identifying pseudocapacitance mechanisms(surface redox pseudocapacitance,intercalation pseudocapacitance,and the extrinsic pseudocapacitance phenomenon in battery materials)by combining in situ hard XAS and electrochemical analyses.Finally,a perspective for further depth of understanding into the pseudocapacitance mechanism using synchrotron X-ray analytical techniques is proposed.
文摘This paper proposed an innovative teaching approach based on finite element technique(FET)to improve the understanding of material mechanics.A teaching experiment was conducted using pure bending deformation of a beam as an example,and the deformation and stress distribution of the beam were analyzed using FET.The results showed that using color stress nephograms and color U nephograms can improve students’learning outcomes in mechanics classroom.The high levels of satisfaction and interest in incorporating new techniques into the classroom suggest that there is a need to explore and develop innovative teaching methods in mechanics and related fields.This approach may inspire educators to develop more effective ways of teaching material mechanics,and our research can contribute to the advancement of mechanics education.
文摘Background: The accuracy of the final prosthesis is affected by the final impression technique and master cast production. The aim of the present study was to evaluate the effect of the functional impression technique with various impression materials on the surface characteristic of dental stone casts and their clinical effect on the retention of complete dentures. Method: Specimens of three impression materials/stone casts were fabricated. The specimens of the impression materials/stone casts were divided into three equal groups (I, II, and III). The impression materials used were as follows: tissue conditioner group (I), zinc oxide (ZEO) (group II) and poly (vinyl siloxane) (PVS) (group III). Cylindrical split aluminium moulds were designed to receive the impression materials and the stone mixture. The surface roughness of the stone cast specimens of the three groups (I, II, and III) was measured with a surface profilometer and analyzed by a scanning electron microscope. A clinical study included five severely resorbed mandibular edentulous alveolar ridges and edentulous maxillary arches. Each subject received three heat-cured acrylic resin dentures, fabricated using the functional impression technique. The three dentures were identical except for the different impression materials used from Groups I, II and III. The retentive force of each denture for each subject was measured. Result: The results of this study revealed that the mean value of surface roughness of the stone cast surface of group I was higher than group II and group III. A statistically significant difference was observed in surface roughness and the retentive dislodging force between the three studied groups. Although using a tissue conditioner as a functional impression material led to a high level of surface roughness and good retention, it could not produce the same smooth surface quality of PVS or ZEO. These data were supported by SEM analysis. The complete dentures for these patients require important oral and denture hygiene care. Conclusion: Complete dentures made using functional impression technique with PVC as a final impression material are more comfortable, retentive and stable.
文摘In recent times,solar energy has become one of the largest available sources of renewable energy at our disposal.However,the design of highly efficient solar cells is increasingly becoming crucial as there has been a surge for economically viable alternative energy sources with the lowest cost.Significant advances have been made through different routes to make photovoltaic(PV)/solar technologies economically viable,eco-friendly and consequently scalable.As a result,cellulose nanomaterials have become one of the emerging technologies in this regard because of the advantages of high-value bio-based nanostructured materials,such as their abundance and sustainability.Nanocellulose-based photoactive nanocomposite materials can be made by integrating conducting photoactive and electroconductive materials with hydrophilic biocompatible cellulose.Inorganic nanoparticles,such as graphene/reduced graphene oxide cadmium sulphide quantum dots,amongst others,can be introduced into the nanocellulose matrix and can be applied either as charge transporters or photoactive materials in different types of solar cells.Thus,in this review,we highlight the optoelectronic properties of different photoactive materials,particularly nanocellulose-based graphene nanocomposites;their efficiencies and drawbacks were X-rayed.The effect of doping each PV material on the PV performance is also discussed.It is anticipated that the novel material would result in a reduction in the cost of solar cells,jointly enhancing their efficacy in generating environmentally friendly electricity.Since the fabrication techniques and equipment play a crucial role in the development of solar cells,the fabrication techniques of bulk-heterojunction(BHJ)cells containing a nanocellulose-based graphene composite and case studies of already fabricated BHJ PV cells with nanocellulose-based graphene composite are discussed.
基金Project supported by the National Nature Science Foundation of China (Grant No. 50506006)the National High Technology Research and Development Program of China (Grant No. 2006AA03A116)the Youth Foundation of University of Electronic Science and Technology of China (Grant No. JX05024)
文摘Thermal property is one of the most important properties of light-emitting diode (LED). Thermal property of LED packaging material determines the heat dissipations of the phosphor and the chip surface, accordingly having an influence on the light-emitting efficiency and the life-span of the device. In this paper, photoacoustic piezoelectric (PAPE) technique has been employed to investigate the thermal properties of polyvinyl alcohol (]?VA) and silicon dioxide, which are the new and the traditional packaging materials in white LED, respectively. Firstly, the theory of PAPE technique has been developed for two-layer model in order to investigate soft materials; secondly, the experimental system has been set up and adjusted by measuring the reference sample; thirdly, the thermal diffusivities of PVA and silicon dioxide are measured and analysed. The experimental results show that PVA has a higher thermal diffusivity than silicon dioxide and is a better packaging material in the sense of thermal diffusivity for white LED.
基金Project supported by the National Natural Science Foundation of China(No.10661009)the Ningxia Natural Science Foundation(No.NZ0604).
文摘The problem of a periodic array of parallel cracks in a homogeneous piezoelectric strip bonded to a functionally graded piezoelectric material is investigated for inhomogeneous continuum. It is assumed that the material inhomogeneity is represented as the spatial variation of the shear modulus in the form of an exponential function along the direction of cracks. The mixed boundary value problem is reduced to a singular integral equation by applying the Fourier transform, and the singular integral equation is solved numerically by using the Gauss-Chebyshev integration technique. Numerical results are obtained to illustrate the variations of the stress intensity factors as a function of the crack periodicity for different values of the material inhomogeneity.
文摘The analytical electron microscopy has been used to characterize the morphology,structure and composition of the nanostructured material of Sn- Bi alloy prepared by a modified electrohydrodynamic technique. The electron diffraction pattern and the corresponding contrast image for the discrete particles with a diameter smaller than 4 nm have been obtained.It is shown that the nanocrystalline Sn-Bi alloy particles comprise a single crystal of Bi-containing β-Sn solid solution or of Sn-containing Bi solid solution. A direct preparation procedure of the samples during the electrohydrodynamic rapid solidification process has been developed for electron microscopic observation.
基金financial support from Natural Science Foundation of China(61605134)Basic Sichuan Applied Research Project(2019YJ0078)the Innovative Spark Project of Sichuan University(2018SCUH0043)
文摘At present,two-dimensional(2D)materials have shown great application potential in numerous fields based on their physical chemical and electronic properties.Raman spectroscopy and de-rivative techniques are effective tools for characterizing 2D materials.Raman spectroscopy conveys lots of knowledge on 2D materials,including layer number,doping type,strain and interlayer coupling.This review summarized advanced applications of Raman spectroscopy in 2D materials.The challenges and possible applied directions of Raman spectroscopy to 2D materials are discussed in detail.
文摘One of the major challenges in designing and fabricating Spintronic devices is the choice of both, Materials and the Technology, along with understanding the intricacies of the Designing aspects. In this communication, we have attempted to briefly discuss these factors, with an aim to draw the attention of the Materials Scientists and Technologists to this serious challenge, in the direction of which, though a lot of research and development work has been done, still needs more concerted efforts to be made in order to make the Spintronic devices that can offer good efficiency for maximizing their usefulness.
文摘A novel technique of Moveable Reduction Bed Hydride Generator(MRBHG)was applied tohe hydride generation or cold vapor generation of As,Se,Ge,and Hg existing In TraditionalChinese Medicinal Material(TCM).The simultaneous determination of the multi-elements wasperformed with ICP-MS.A solid reduction system involving the use of potassiumtetraborohydride and tartaric acid was applied to generating metal hydride or cold vaporefficiently.The factors affecting the metal cold vapor generation were studied.The mainadvantage of the technique is that only a 4μL volume of sample was required for the cold vapor
文摘Granular wastes have negative effects on the environment due to contamination. On the other hand, stony components in granular wastes have a potential good perspectives for utilization in civil engineering works as secondary raw building materials. To reuse such materials without environmental risks, all contaminants must be removed or reduced to an acceptable level. Therefore liberation of materials is an important step in waste treatment. For this purpose, separation and cleansing techniques are suitable. Based on the analysis of contaminants in wastes, it is discussed how to select suitable techniques. The rules for technique selection and processes for quality improvement are set up. To evaluate the environmental quality and technical quality of output products, it is necessary to check leaching behaviours and physical properties.
基金the National Natural Science Foundationthe National Post-doctoral Science Foundation of China
文摘The problem of an anti-plane Griffith crack moving along the interface of dissimilar piezoelectric materials is solved by using the integral transform technique. It is shown from the result that the intensity factors of anti-plane stress and electric displacement around the crack tip are dependent on the speed of the Griffith crack as well as the material coefficients. When the two piezoelectric materials are identical, the present result will be reduced to the result far the problem of an anti-plane moving Griffith crack in homogeneous piezoelectric materials.
基金Funded by the National Basic Research Program of China("973"Program)(No.2009CB623102)the National High Technology Research and Development Program of China("863"Program)(No.2013AA031602)
文摘The traditional alumina-silicate raw materials, for example, clays, in the precalcining technique of cement production, have been replaced by low grade and high silica content sandstones, shales, and industrial waste residues, including fly ashes, slag, and others. The results are the change of compositions and characteristics of raw materials applied and a great effect on cement calcination process and clinker formation. In this work, the cement clinker formation process of different alumina-silicate raw materials to replace clay raw material was studied by chemical analysis, X-ray diffraction, differential thermal analysis, and high temperature microscope based on the characteristics of the alumina-silicate raw materials. The formation heat of the clinker was determined by the acid dissolution method. Influence of different alumina-silicate raw materials on the clinker burnability and formation process was studied. The results show that the changing of alumina- silicate raw materials, especially using industrial waste residues, can reduce the formation temperature of high temperature liquid phases, improve the burnability of raw materials, reduce the formation temperature and formation heat of clinker. And this study also observed the formation temperature and transformation of high temperature liquid phases in the heating process of raw materials by high temperature microscope.
基金supported by the National Natural Science Foundation of China(11172055 and 11202045)
文摘An accurate evaluation of strongly singular domain integral appearing in the stress representation formula is a crucial problem in the stress analysis of functionally graded materials using boundary element method.To solve this problem,a singularity separation technique is presented in the paper to split the singular integral into regular and singular parts by subtracting and adding a singular term.The singular domain integral is transformed into a boundary integral using the radial integration method.Analytical expressions of the radial integrals are obtained for two commonly used shear moduli varying with spatial coordinates.The regular domain integral,after expressing the displacements in terms of the radial basis functions,is also transformed to the boundary using the radial integration method.Finally,a boundary element method without internal cells is established for computing the stresses at internal nodes of the functionally graded materials with varying shear modulus.
基金Sponsored by the National Mega-Project of Scientific & Technical Supporting Programs,Ministry of Science &Technology of China (Grant No.2006BAJ04A04)the Science Foundation of Liaoning Province,China (Grant No. 2008S190)
文摘The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-drying (FD),low pressure drying (LPD),high temperature drying (HTD) and chemical modification & ambient drying (CMD) techniques.Observation under pore distribution and structural properties showed that CMD technique leads to homogenous mesoporous silica material with specific surface area of 745 m2/g,and the average pore size around 20 nm,while LPD and HTD result in loosely packed particles with non-isotropic aggregation pattern.The specific surface areas of LPD and HTD samples are 419 and 513 m2/g respectively,and the pore size distribution of the samples are observed distributing widely in range of 10-100 nm.Freeze drying method is a new but prospective way to prepare mesoporous silica.The specific area of FD sample is around 500 m2/g.By the comparison for the properties of the gels,this paper wants to induce a further interest in finding a proper method to synthesize the porous silica gels for low price use.