BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period,and that the latter has a greater impact on the long-t...Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period,and that the latter has a greater impact on the long-term prognosis of the patient.However,current stroke studies have typically focused only on lesions in the central nervous system,ignoring secondary damage caused by this disease.Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system.Further,the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial,leading scholars to explore more pragmatic intervention strategies.As treatment measures targeting limb symptoms can greatly improve a patient’s quality of life,they have become a critical intervention strategy.As the most vital component of the limbs,skeletal muscles have become potential points of concern.Despite this,to the best of our knowledge,there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle.The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy,inflammation,neuroregeneration,mitochondrial changes,and nutritional dysregulation in stroke survivors.In addition,the challenges,as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.展开更多
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways...Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.展开更多
Background:Hamstring muscle strain injury(hamstring injury) due to excessive muscle strain is one of the most common injuries in sports.The relationships among hamstring muscle optimal lengths and hamstring flexibilit...Background:Hamstring muscle strain injury(hamstring injury) due to excessive muscle strain is one of the most common injuries in sports.The relationships among hamstring muscle optimal lengths and hamstring flexibility and strength were unknown,which limited our understanding of risk factors for hamstring injury.This study was aimed at examining the relationships among hamstring muscle optimal length and flexibility and strength.Methods:Hamstring flexibility and isokinetic strength data and three-dimensional kinematic data for hamstring isokinetic tests were collected for11 male and 10 female recreational athletes.The maximal hamstring muscle forces,optimal lengths,and muscle lengths in standing were determined for each participant.Results:Hamstring muscle optimal lengths were significantly correlated to hamstring flexibility score and gender,but not to hamstring strength.The greater the flexibility score,the longer the hamstring muscle optimal length.With the same flexibility score,females tend to have shorter hamstring optimal muscle lengths compared to males.Hamstring flexibility score and hamstring strength were not correlated.Hamstring muscle optimal lengths were longer than but not significantly correlated to corresponding hamstring muscle lengths in standing.Conclusion:Hamstring flexibility may affect hamstring muscle maximum strain in movements.With similar hamstring flexibility,hamstring muscle maximal strain in a given movement may be different between genders.Hamstring muscle lengths in standing should not be used as an approximation of their optimal lengths in calculation of hamstring muscle strain in musculoskeletal system modeling.展开更多
Coordinated contraction of skeletal muscles relies on selective connections between the muscles and multiple classes of the spinal motoneuro ns.Howeve r,current research on the spatial location of the spinal motoneuro...Coordinated contraction of skeletal muscles relies on selective connections between the muscles and multiple classes of the spinal motoneuro ns.Howeve r,current research on the spatial location of the spinal motoneurons innervating differe nt muscles is limited.In this study,we investigated the spatial distribution and relative position of different motoneurons that control the deep muscles of the mouse hindlimbs,which were innervated by the obturator nerve,femoral nerve,inferior gluteal nerve,deep pe roneal nerve,and tibial nerve.Locations were visualized by combining a multiplex retrograde tracking technique compatible with three-dimensional imaging of solvent-cleared o rgans(3DISCO)and 3-D imaging technology based on lightsheet fluorescence microscopy(LSFM).Additionally,we propose the hypothesis that"messenger zones"exist as interlaced areas between the motoneuron pools that dominate the synergistic or antagonist muscle groups.We hypothesize that these interlaced neurons may participate in muscle coordination as messenger neurons.Analysis revealed the precise mutual positional relationships among the many motoneurons that innervate different deep muscles of the mouse.Not only do these findings update and supplement our knowledge regarding the overall spatial layout of spinal motoneurons that control mouse limb muscles,but they also provide insights into the mechanisms through which muscle activity is coordinated and the architecture of motor circuits.展开更多
Tumor necrosis factorα(TNFα)exhibits diverse biological functions;however,its regulatory roles in myogenesis are not fully understood.In the present study,we explored the function of TNFαin myoblast proliferation,d...Tumor necrosis factorα(TNFα)exhibits diverse biological functions;however,its regulatory roles in myogenesis are not fully understood.In the present study,we explored the function of TNFαin myoblast proliferation,differentiation,migration,and myotube fusion in primary myoblasts and C2C12 cells.To this end,we constructed TNFαmuscle-conditional knockout(TNFα-CKO)mice and compared them with flox mice to assess the effects of TNFαknockout on skeletal muscles.Results indicated that TNFα-CKO mice displayed phenotypes such as accelerated muscle development,enhanced regenerative capacity,and improved exercise endurance compared to flox mice,with no significant differences observed in major visceral organs or skeletal structure.Using label-free proteomic analysis,we found that TNFα-CKO altered the distribution of several muscle development-related proteins,such as Hira,Casz1,Casp7,Arhgap10,Gas1,Diaph1,Map3k20,Cfl2,and Igf2,in the nucleus and cytoplasm.Gene set enrichment analysis(GSEA)further revealed that TNFαdeficiency resulted in positive enrichment in oxidative phosphorylation and MyoD targets and negative enrichment in JAK-STAT signaling.These findings suggest that TNFα-CKO positively regulates muscle growth and development,possibly via these newly identified targets and pathways.展开更多
Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is ...Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is considerable heterogeneity,including clinical presentation,progression,and the underlying triggers for disease initiation.Based on longitudinal studies with families harboring amyotrophic lateral sclerosis-associated gene mutations,it has become apparent that overt disease is preceded by a prodromal phase,possibly in years,where compensatory mechanisms delay symptom onset.Since 85-90%of amyotrophic lateral sclerosis is sporadic,there is a strong need for identifying biomarkers that can detect this prodromal phase as motor neurons have limited capacity for regeneration.Current Food and Drug Administration-approved therapies work by slowing the degenerative process and are most effective early in the disease.Skeletal muscle,including the neuromuscular junction,manifests abnormalities at the earliest stages of the disease,before motor neuron loss,making it a promising source for identifying biomarkers of the prodromal phase.The accessibility of muscle through biopsy provides a lens into the distal motor system at earlier stages and in real time.The advent of“omics”technology has led to the identification of numerous dysregulated molecules in amyotrophic lateral sclerosis muscle,ranging from coding and non-coding RNAs to proteins and metabolites.This technology has opened the door for identifying biomarkers of disease activity and providing insight into disease mechanisms.A major challenge is correlating the myriad of dysregulated molecules with clinical or histological progression and understanding their relevance to presymptomatic phases of disease.There are two major goals of this review.The first is to summarize some of the biomarkers identified in human amyotrophic lateral sclerosis muscle that have a clinicopathological correlation with disease activity,evidence of a similar dysregulation in the SOD1G93A mouse during presymptomatic stages,and evidence of progressive change during disease progression.The second goal is to review the molecular pathways these biomarkers reflect and their potential role in mitigating or promoting disease progression,and as such,their potential as therapeutic targets in amyotrophic lateral sclerosis.展开更多
Sarcopenia,or muscle loss,has been one of the hot topics in the medical field in recent years.Due to limited attention and effective treatments for sarcopenia in the past,many patients,especially the elderly,suffered ...Sarcopenia,or muscle loss,has been one of the hot topics in the medical field in recent years.Due to limited attention and effective treatments for sarcopenia in the past,many patients,especially the elderly,suffered irreversible damage to their motor function caused by sarcopenia.However,recent scientific studies have found that the occurrence and development of sarcopenia are closely related to the function and quantity of muscle satellite cells.This article briefly discusses the relationship between muscle satellite cells and sarcopenia.展开更多
The majority of bladder cancers(BCs)are non-muscle invasive BCs(NMIBCs)and show the morphology of a conventional urothelial carcinoma(UC).Aberrant morphology is rare but can be observed.The classification and characte...The majority of bladder cancers(BCs)are non-muscle invasive BCs(NMIBCs)and show the morphology of a conventional urothelial carcinoma(UC).Aberrant morphology is rare but can be observed.The classification and characterization of histologic subtypes(HS)in UC in BC have mainly been described in muscle in-vasive bladder cancer(MIBC).However,the currently used classification is ap-plied for invasive urothelial neoplasm and therefore,also valid for a subset of NMIBC.The standard transurethral diagnostic work-up misses the presence of HS in NMIBC in a considerable percentage of patients and the real prevalence is not known.HS in NMIBC are associated with an aggressive phenotype.Conse-quently,clinical guidelines categorize HS of NMIBC as“(very)high-risk”tumors and recommend offering radical cystectomy to these patients.Alternative strategies for bladder preservation can only be offered to highly selected patients and ideally within clinical trials.Novel treatment strategies and biomarkers have been established MIBC and NMIBC but have not been comprehensively invest-igated in the context of HS in NMIBC.Further evaluation prior to implementation into clinical practice is needed.展开更多
Pneumatic muscle actuators(PMAs)are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries,such as strokes,spinal cord injuries,etc.,to accomplis...Pneumatic muscle actuators(PMAs)are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries,such as strokes,spinal cord injuries,etc.,to accomplish rehabilitation tasks.However,because PMAs have nonlinearities,hysteresis,and uncertainties,etc.,complex mechanisms are rarely involved in the study of PMA-driven robotic systems.In this paper,we use nonlinear model predictive control(NMPC)and an extension of the echo state network called an echo state Gaussian process(ESGP)to design a tracking controller for a PMA-driven lower limb exoskeleton.The dynamics of the system include the PMA actuation and mechanism of the leg orthoses;thus,the system is represented by two nonlinear uncertain subsystems.To facilitate the design of the controller,joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP.A gradient descent algorithm is employed to solve the optimization problem and generate the control signal.The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics.Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects.展开更多
Background:The effect of hamstring flexibility on the peak hamstring muscle strains in sprinting,until now,remained unknown,which limited our understanding of risk factors of hamstring muscle strain injury(hamstring i...Background:The effect of hamstring flexibility on the peak hamstring muscle strains in sprinting,until now,remained unknown,which limited our understanding of risk factors of hamstring muscle strain injury(hamstring injury).As a continuation of our previous study,this study was aimed to examine the relationship between hamstring flexibility and peak hamstring muscle strains in sprinting.Methods:Ten male and 10 female college students participated in this study.Hamstring flexibility,isokinetic strength data,three-dimensional(3D)kinematic data in a hamstring isokinetic test,and kinematic data in a sprinting test were collected for each participant.The optimal hamstring muscle lengths and peak hamstring muscle strains in sprinting were determined for each participant.Results:The muscle strain of each of the 3 biarticulated hamstring muscles reached a peak during the late swing phase.Peak hamstring muscle strains were negatively correlated to hamstring flexibility(0.1179 ≤ R2≤ 0.4519,p = 0.001) but not to hip and knee joint positions at the time of peak hamstring muscle strains.Peak hamstring muscle strains were not different for different genders.Peak muscle strains of biceps long head(0.071 ± 0.059) and semitendinosus(0.070 ± 0.055) were significantly greater than that of semimembranosus(0.064 ± 0.054).Conclusion:A potential for hamstring injury exists during the late swing phase of sprinting.Peak hamstring muscle strains in sprinting are negatively correlated to hamstring flexibility across individuals.The magnitude of peak muscle strains is different among hamstring muscles in sprinting,which may explain the different injury rate among hamstring muscles.展开更多
Background:Near-infrared spectroscopy(NIRS)technology has allowed for the measurement of cerebral and skeletal muscle oxygenation simultaneously during exercise.Since this technology has been growing and is now succes...Background:Near-infrared spectroscopy(NIRS)technology has allowed for the measurement of cerebral and skeletal muscle oxygenation simultaneously during exercise.Since this technology has been growing and is now successfully used in laboratory and sports settings,this systematic review aimed to synthesize the evidence and enhance an integrative understanding of bloodflow adjustments and oxygen(O_(2))changes(i.e.,the balance between O_(2) delivery and O_(2) consumption)within the cerebral and muscle systems during exercise.Methods:A systematic review was conducted using PubMed,Embase,Scopus,and Web of Science databases to search for relevant studies that simultaneously investigated cerebral and muscle hemodynamic changes using the near-infrared spectroscopy system during exercise.This review considered manuscripts written in English and available before February 9,2023.Each step of screening involved evaluation by 2 inde-pendent authors,with disagreements resolved by a third author.The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodological quality of the studies.Results:Twenty studies were included,of which 80%had good methodological quality,and involved 290 young or middle-aged adults.Different types of exercises were used to assess cerebral and muscle hemodynamic changes,such as cycling(n=11),treadmill(n=1),knee extension(n=5),isometric contraction of biceps brachii(n=3),and duet swim routines(n=1).The cerebral hemodynamics anal-ysis was focused on the frontal cortex(n=20),while in the muscle,the analysis involved vastus lateralis(n=18),gastrocnemius(n=3),biceps brachii(n=5),deltoid(n=1),and intercostal muscle(n=1).Overall,muscle deoxygenation increases during exercise,reaching a plateau in voluntary exhaustion,while in the brain,oxyhemoglobin concentration increases with exercise intensity,reaching a plateau or declining at the exhaustion point.Conclusion:Muscle and cerebral oxygenation respond differently to exercise,with muscle increasing O_(2) utilization and cerebral tissue increasing O_(2) delivery during exercise.However,at the exhaustion point,both muscle and cerebral oxygenation become compromised.This is characterized by a reduction in bloodflow and a decrease in O_(2) extraction in the muscle,while in the brain,oxygenation reaches a plateau or decline,potentially resulting in motor failure during exercise.展开更多
This editorial comments on an article published in a recent issue of World Journal of Gastroenterology,entitled“Association of low muscle strength with metabolic dysfunction-associated fatty liver disease:A nationwid...This editorial comments on an article published in a recent issue of World Journal of Gastroenterology,entitled“Association of low muscle strength with metabolic dysfunction-associated fatty liver disease:A nationwide study”.We focused on the association between muscle strength and the incidence of non-alcoholic fatty liver disease(NAFLD)and metabolic-associated fatty liver disease(MAFLD),as well as the mechanisms underlying the correlation and related clinical applications.NAFLD,which is now redefined as MAFLD,is one of the most common chronic liver diseases globally with an increasing prevalence and is characterized by malnutrition,which may contribute to decreased muscle strength.Reduction of muscle strength reportedly has a pathogenesis similar to that of NAFLD/MAFLD,including insulin resistance,inflammation,sedentary behavior,as well as insufficient vitamin D.Multiple studies have focused on the relationship between sarcopenia or muscle strength and NAFLD.However,studies investigating the relationship between muscle strength and MAFLD are limited.Owing to the shortage of specific medications for NAFLD/MAFLD treatment,early detection is essential.Furthermore,the relationship between muscle strength and NAFLD/MAFLD suggests that improvements in muscle strength may have an impact on disease prevention and may provide novel insights into treatments including dietary therapy,as well as tailored physical activity.展开更多
AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-con...AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-control study.Eighteen subjects with AACE and eighteen HCs were enrolled.MRI scanning data were conducted in target-controlled central gaze with a 3-Tesla magnetic resonance scanner.Extraocular muscles(EOMs)were scanned in contiguous image planes 2-mm thick spanning the EOM origins to the globe equator.To form posterior partial volumes(PPVs),the LR and MR cross-sections in the image planes 8,10,12,and 14 mm posterior to the globe were summed and multiplied by the 2-mm slice thickness.The data were classified according to the right eye,left eye,dominant eye,and non-dominant eye,and the differences in mean cross-sectional area,maximum cross-sectional area,and PPVs of the MR and LR muscle in the AACE group and HCs group were compared under the above classifications respectively.RESULTS:There were no significant differences between the two groups of demographic characteristics.The mean cross-sectional area of the LR muscle was significantly greater in the AACE group than that in the HCs group in the non-dominant eyes(P=0.028).The maximum cross-sectional area of the LR muscle both in the dominant and non-dominant eye of the AACE group was significantly greater than the HCs group(P=0.009,P=0.016).For the dominant eye,the PPVs of the LR muscle were significantly greater in the AACE than that in the HCs group(P=0.013),but not in the MR muscle(P=0.698).CONCLUSION:The size and volume of muscles dominant eyes of AACE subjects change significantly to overcome binocular diplopia.The LR muscle become larger to compensate for the enhanced convergence in the AACE.展开更多
Purpose: The purpose of this study was to evaluate the effect of using a passive exoskeleton on lumbar muscle activity during lifting movements, and to determine whether muscle activity remains altered after exoskelet...Purpose: The purpose of this study was to evaluate the effect of using a passive exoskeleton on lumbar muscle activity during lifting movements, and to determine whether muscle activity remains altered after exoskeleton removal. This study sought to identify the potential risks and benefits associated with the use of passive exoskeletons for the prevention and treatment of low back pain. Methods: Eighteen healthy adult participants lifted a 10 kg suitcase while wearing a passive exoskeleton. Muscle activity and postures were measured during lifting and before, during, and after exoskeleton use. This study examined whether the reduced muscle activity observed during exoskeleton use persisted after exoskeleton removal. Muscle activity was assessed using electromyography and postures were recorded using reflective markers and a camera. Results: The study found that Lumbar muscle activity decreased significantly (approximately 40%) during exoskeleton use compared to that without exoskeleton use. Importantly, lumbar muscle activity remained low after exoskeleton removal, at levels similar to those observed during exoskeleton use. This suggests that individuals adapted to the exoskeleton support and maintained altered muscle control, even without the exoskeleton. Conclusion: This study demonstrates that passive exoskeletons significantly reduce lumbar muscle activity during lifting tasks, and that this altered muscle control persists after exoskeleton removal. These findings contribute to the understanding of the risks and benefits of passive exoskeletons, potentially aiding their development and informing their use in the prevention and treatment of low back pain.展开更多
Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as ...Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.展开更多
Sodium metal batteries(SMBs)have attracted increasing attention over time due to their abundance of sodium resources and low cost.However,the widespread application of SMBs as a viable technology remains a great chall...Sodium metal batteries(SMBs)have attracted increasing attention over time due to their abundance of sodium resources and low cost.However,the widespread application of SMBs as a viable technology remains a great challenge,such as uneven metallic deposition and dendrite formation during cycling.Carbon skeletons as sodiophilic hosts can alleviate the dendrite formation during the plating/stripping.For the carbon skeleton,how to rationalize the design sodiophilic interfaces between the sodium metal and carbon species remains key to developing desirable Na anodes.Herein,we fabricated four kinds of structural features for carbon skeletons using conventional calcination and flash Joule heating.The roles of conductivity,defects,oxygen content,and the distribution of graphite for the deposition of metallic sodium were discussed in detail.Based on interface engineering,the J1600 electrode,which has abundant Na-C species on its surface,showed the highest sodiophilic.There are uniform and rich F-Na species distributed in the inner solid electrolyte interface layer.This study investigated the different Na-deposition behavior in carbon hosts with distinct graphitic arrangements to pave the way for designing and optimizing advanced electrode materials.展开更多
Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev...Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.展开更多
[Objectives]To explore the effects of Shentong Zhuyu decoction combined with massage therapy in the treatment of exertional chronic lumbar muscle strain.[Methods]Sixty-four cases of exertional chronic lumbar muscle st...[Objectives]To explore the effects of Shentong Zhuyu decoction combined with massage therapy in the treatment of exertional chronic lumbar muscle strain.[Methods]Sixty-four cases of exertional chronic lumbar muscle strain were randomly divided into two groups(32 cases each group).The patients in the control group only took celecoxib capsules,and those in the treatment group additionally took Shentong Zhuyu decoction combined with massage therapy.TCM syndrome score,lumbar function,hemorrheology index and clinical effect were compared between the two groups before and after treatment.[Results]After treatment,the TCM syndrome scores of lumbar distension/dull pain,tingling-like lumbago,adverse lateral turn,body weight loss,dark purple tongue,slow or astringent pulse,and Oswestry disability index(ODI)score in the treatment group were lower than those in the control group,and the levels of plasma viscosity,red blood cell aggregation index,platelet aggregation rate(PAG)and fibrinogen(Fib)were lower than those in the control group,showing statistical significance(P<0.05).The overall clinical effect distribution of the treatment group was better than that of the control group,and the difference was statistically significant(P<0.05).[Conclusions]Shentong Zhuyu decoction combined with massage therapy can effectively relieve the symptoms of patients with lumbago and improve the lumbar mobility function and hemorrheology,with obvious therapeutic effects in the treatment of exertional chronic lumbar muscle strain.展开更多
Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth an...Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear.This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers.We measured the growth performance of Cornish(CC)and White Plymouth Rock(RR)over a 42-d period.Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching(D21)and D42 for RNA-seq and ATAC-seq library construction.Results The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured,with CC outpacing RR in terms of weight at each stage of development.Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages,respectively.A total of 75,149 ATAC-seq peaks were annotated in promoter,exon,intron and intergenic regions,with a higher number of peaks in the promoter and intronic regions.The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis.The results spotlighted the upregulation of ACTC1 and FDPS at D21,which were primarily associated with muscle structure development by gene cluster enrichment.Additionally,a noteworthy upregulation of MUSTN1,FOS and TGFB3 was spotted in broiler chickens at D42,which were involved in cell differentiation and muscle regeneration after injury,suggesting a regulatory role of muscle growth and repair.Conclusions This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration.Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration.These findings provide a foundation for future research to investigate the functional aspects of muscle development.展开更多
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金supported by the National Natural Science Foundation of China for Young Scientists,No.82104732(to RY)Xinglin Scholar Project of Chengdu University of Traditional Chinese Medicine,No.BSH2020022(to RY)the Open Research Fund of Chengdu University of Traditional Chinese Medicine Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China,No.2020XSGG002(to NZ)。
文摘Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period,and that the latter has a greater impact on the long-term prognosis of the patient.However,current stroke studies have typically focused only on lesions in the central nervous system,ignoring secondary damage caused by this disease.Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system.Further,the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial,leading scholars to explore more pragmatic intervention strategies.As treatment measures targeting limb symptoms can greatly improve a patient’s quality of life,they have become a critical intervention strategy.As the most vital component of the limbs,skeletal muscles have become potential points of concern.Despite this,to the best of our knowledge,there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle.The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy,inflammation,neuroregeneration,mitochondrial changes,and nutritional dysregulation in stroke survivors.In addition,the challenges,as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.
基金supported by the German Research Council(Deutsche Forschungsgemeinschaft,HA3309/3-1/2,HA3309/6-1,HA3309/7-1)。
文摘Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review.
基金supported by the National Natural Science Foundation of China(No.81572212)the Fundamental Research Funds for the Central Universities of China(No.2016BS013)
文摘Background:Hamstring muscle strain injury(hamstring injury) due to excessive muscle strain is one of the most common injuries in sports.The relationships among hamstring muscle optimal lengths and hamstring flexibility and strength were unknown,which limited our understanding of risk factors for hamstring injury.This study was aimed at examining the relationships among hamstring muscle optimal length and flexibility and strength.Methods:Hamstring flexibility and isokinetic strength data and three-dimensional kinematic data for hamstring isokinetic tests were collected for11 male and 10 female recreational athletes.The maximal hamstring muscle forces,optimal lengths,and muscle lengths in standing were determined for each participant.Results:Hamstring muscle optimal lengths were significantly correlated to hamstring flexibility score and gender,but not to hamstring strength.The greater the flexibility score,the longer the hamstring muscle optimal length.With the same flexibility score,females tend to have shorter hamstring optimal muscle lengths compared to males.Hamstring flexibility score and hamstring strength were not correlated.Hamstring muscle optimal lengths were longer than but not significantly correlated to corresponding hamstring muscle lengths in standing.Conclusion:Hamstring flexibility may affect hamstring muscle maximum strain in movements.With similar hamstring flexibility,hamstring muscle maximal strain in a given movement may be different between genders.Hamstring muscle lengths in standing should not be used as an approximation of their optimal lengths in calculation of hamstring muscle strain in musculoskeletal system modeling.
基金supported by the Chinese National General Program of the National Natural Science Foundation of China,No.82072162(to XY)。
文摘Coordinated contraction of skeletal muscles relies on selective connections between the muscles and multiple classes of the spinal motoneuro ns.Howeve r,current research on the spatial location of the spinal motoneurons innervating differe nt muscles is limited.In this study,we investigated the spatial distribution and relative position of different motoneurons that control the deep muscles of the mouse hindlimbs,which were innervated by the obturator nerve,femoral nerve,inferior gluteal nerve,deep pe roneal nerve,and tibial nerve.Locations were visualized by combining a multiplex retrograde tracking technique compatible with three-dimensional imaging of solvent-cleared o rgans(3DISCO)and 3-D imaging technology based on lightsheet fluorescence microscopy(LSFM).Additionally,we propose the hypothesis that"messenger zones"exist as interlaced areas between the motoneuron pools that dominate the synergistic or antagonist muscle groups.We hypothesize that these interlaced neurons may participate in muscle coordination as messenger neurons.Analysis revealed the precise mutual positional relationships among the many motoneurons that innervate different deep muscles of the mouse.Not only do these findings update and supplement our knowledge regarding the overall spatial layout of spinal motoneurons that control mouse limb muscles,but they also provide insights into the mechanisms through which muscle activity is coordinated and the architecture of motor circuits.
基金Xizang Major Science and Technology Project(XZ202101ZD0005N)Yunnan Major Science and Technology Project(202302AE090015)+1 种基金National Key R&D Program of China(2023ZD04044-04)National Natural Science Foundation of China(32060736)。
文摘Tumor necrosis factorα(TNFα)exhibits diverse biological functions;however,its regulatory roles in myogenesis are not fully understood.In the present study,we explored the function of TNFαin myoblast proliferation,differentiation,migration,and myotube fusion in primary myoblasts and C2C12 cells.To this end,we constructed TNFαmuscle-conditional knockout(TNFα-CKO)mice and compared them with flox mice to assess the effects of TNFαknockout on skeletal muscles.Results indicated that TNFα-CKO mice displayed phenotypes such as accelerated muscle development,enhanced regenerative capacity,and improved exercise endurance compared to flox mice,with no significant differences observed in major visceral organs or skeletal structure.Using label-free proteomic analysis,we found that TNFα-CKO altered the distribution of several muscle development-related proteins,such as Hira,Casz1,Casp7,Arhgap10,Gas1,Diaph1,Map3k20,Cfl2,and Igf2,in the nucleus and cytoplasm.Gene set enrichment analysis(GSEA)further revealed that TNFαdeficiency resulted in positive enrichment in oxidative phosphorylation and MyoD targets and negative enrichment in JAK-STAT signaling.These findings suggest that TNFα-CKO positively regulates muscle growth and development,possibly via these newly identified targets and pathways.
基金supported by NIH Grants R01NS092651 and R21NS111275-01the Department of Veterans Affairs,BX001148 and BX005899(to PHK)。
文摘Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is considerable heterogeneity,including clinical presentation,progression,and the underlying triggers for disease initiation.Based on longitudinal studies with families harboring amyotrophic lateral sclerosis-associated gene mutations,it has become apparent that overt disease is preceded by a prodromal phase,possibly in years,where compensatory mechanisms delay symptom onset.Since 85-90%of amyotrophic lateral sclerosis is sporadic,there is a strong need for identifying biomarkers that can detect this prodromal phase as motor neurons have limited capacity for regeneration.Current Food and Drug Administration-approved therapies work by slowing the degenerative process and are most effective early in the disease.Skeletal muscle,including the neuromuscular junction,manifests abnormalities at the earliest stages of the disease,before motor neuron loss,making it a promising source for identifying biomarkers of the prodromal phase.The accessibility of muscle through biopsy provides a lens into the distal motor system at earlier stages and in real time.The advent of“omics”technology has led to the identification of numerous dysregulated molecules in amyotrophic lateral sclerosis muscle,ranging from coding and non-coding RNAs to proteins and metabolites.This technology has opened the door for identifying biomarkers of disease activity and providing insight into disease mechanisms.A major challenge is correlating the myriad of dysregulated molecules with clinical or histological progression and understanding their relevance to presymptomatic phases of disease.There are two major goals of this review.The first is to summarize some of the biomarkers identified in human amyotrophic lateral sclerosis muscle that have a clinicopathological correlation with disease activity,evidence of a similar dysregulation in the SOD1G93A mouse during presymptomatic stages,and evidence of progressive change during disease progression.The second goal is to review the molecular pathways these biomarkers reflect and their potential role in mitigating or promoting disease progression,and as such,their potential as therapeutic targets in amyotrophic lateral sclerosis.
文摘Sarcopenia,or muscle loss,has been one of the hot topics in the medical field in recent years.Due to limited attention and effective treatments for sarcopenia in the past,many patients,especially the elderly,suffered irreversible damage to their motor function caused by sarcopenia.However,recent scientific studies have found that the occurrence and development of sarcopenia are closely related to the function and quantity of muscle satellite cells.This article briefly discusses the relationship between muscle satellite cells and sarcopenia.
文摘The majority of bladder cancers(BCs)are non-muscle invasive BCs(NMIBCs)and show the morphology of a conventional urothelial carcinoma(UC).Aberrant morphology is rare but can be observed.The classification and characterization of histologic subtypes(HS)in UC in BC have mainly been described in muscle in-vasive bladder cancer(MIBC).However,the currently used classification is ap-plied for invasive urothelial neoplasm and therefore,also valid for a subset of NMIBC.The standard transurethral diagnostic work-up misses the presence of HS in NMIBC in a considerable percentage of patients and the real prevalence is not known.HS in NMIBC are associated with an aggressive phenotype.Conse-quently,clinical guidelines categorize HS of NMIBC as“(very)high-risk”tumors and recommend offering radical cystectomy to these patients.Alternative strategies for bladder preservation can only be offered to highly selected patients and ideally within clinical trials.Novel treatment strategies and biomarkers have been established MIBC and NMIBC but have not been comprehensively invest-igated in the context of HS in NMIBC.Further evaluation prior to implementation into clinical practice is needed.
基金supported in part by the National Natural Science Foundation of China(U1913207)the International Science and Technology Cooperation Program of China(2017YFE0128300)the Fundamental Research Funds for the Central Universities(HUST 2019kfyRCPY014)。
文摘Pneumatic muscle actuators(PMAs)are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries,such as strokes,spinal cord injuries,etc.,to accomplish rehabilitation tasks.However,because PMAs have nonlinearities,hysteresis,and uncertainties,etc.,complex mechanisms are rarely involved in the study of PMA-driven robotic systems.In this paper,we use nonlinear model predictive control(NMPC)and an extension of the echo state network called an echo state Gaussian process(ESGP)to design a tracking controller for a PMA-driven lower limb exoskeleton.The dynamics of the system include the PMA actuation and mechanism of the leg orthoses;thus,the system is represented by two nonlinear uncertain subsystems.To facilitate the design of the controller,joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP.A gradient descent algorithm is employed to solve the optimization problem and generate the control signal.The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics.Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects.
基金supported by the National Natural Science Foundation of China(No.81572212)the Fundamental Research Funds for the Central Universities of China(No.2016BS013)
文摘Background:The effect of hamstring flexibility on the peak hamstring muscle strains in sprinting,until now,remained unknown,which limited our understanding of risk factors of hamstring muscle strain injury(hamstring injury).As a continuation of our previous study,this study was aimed to examine the relationship between hamstring flexibility and peak hamstring muscle strains in sprinting.Methods:Ten male and 10 female college students participated in this study.Hamstring flexibility,isokinetic strength data,three-dimensional(3D)kinematic data in a hamstring isokinetic test,and kinematic data in a sprinting test were collected for each participant.The optimal hamstring muscle lengths and peak hamstring muscle strains in sprinting were determined for each participant.Results:The muscle strain of each of the 3 biarticulated hamstring muscles reached a peak during the late swing phase.Peak hamstring muscle strains were negatively correlated to hamstring flexibility(0.1179 ≤ R2≤ 0.4519,p = 0.001) but not to hip and knee joint positions at the time of peak hamstring muscle strains.Peak hamstring muscle strains were not different for different genders.Peak muscle strains of biceps long head(0.071 ± 0.059) and semitendinosus(0.070 ± 0.055) were significantly greater than that of semimembranosus(0.064 ± 0.054).Conclusion:A potential for hamstring injury exists during the late swing phase of sprinting.Peak hamstring muscle strains in sprinting are negatively correlated to hamstring flexibility across individuals.The magnitude of peak muscle strains is different among hamstring muscles in sprinting,which may explain the different injury rate among hamstring muscles.
基金supported by the Sao Paulo Research Foundation(FAPESP)(Grant Numbers 20/11946-6,18/05821-6,17/10201-4,09/08535-5,19/20894-2,and 19/10666-2)the Brazilian National Council for Scientific and Technological Development(CNPq)(Grant Numbers 164937/2020-0,309832/2021-7,308117/2018-2,307718/2018-2,and 409521/2021-3)+1 种基金the Pro-Reitoria de Pesquisa(PROPe)of Sao Paulo State University(UNESP)the IDOR/Pioneer Science Initiative(www.pioneerscience.org).
文摘Background:Near-infrared spectroscopy(NIRS)technology has allowed for the measurement of cerebral and skeletal muscle oxygenation simultaneously during exercise.Since this technology has been growing and is now successfully used in laboratory and sports settings,this systematic review aimed to synthesize the evidence and enhance an integrative understanding of bloodflow adjustments and oxygen(O_(2))changes(i.e.,the balance between O_(2) delivery and O_(2) consumption)within the cerebral and muscle systems during exercise.Methods:A systematic review was conducted using PubMed,Embase,Scopus,and Web of Science databases to search for relevant studies that simultaneously investigated cerebral and muscle hemodynamic changes using the near-infrared spectroscopy system during exercise.This review considered manuscripts written in English and available before February 9,2023.Each step of screening involved evaluation by 2 inde-pendent authors,with disagreements resolved by a third author.The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodological quality of the studies.Results:Twenty studies were included,of which 80%had good methodological quality,and involved 290 young or middle-aged adults.Different types of exercises were used to assess cerebral and muscle hemodynamic changes,such as cycling(n=11),treadmill(n=1),knee extension(n=5),isometric contraction of biceps brachii(n=3),and duet swim routines(n=1).The cerebral hemodynamics anal-ysis was focused on the frontal cortex(n=20),while in the muscle,the analysis involved vastus lateralis(n=18),gastrocnemius(n=3),biceps brachii(n=5),deltoid(n=1),and intercostal muscle(n=1).Overall,muscle deoxygenation increases during exercise,reaching a plateau in voluntary exhaustion,while in the brain,oxyhemoglobin concentration increases with exercise intensity,reaching a plateau or declining at the exhaustion point.Conclusion:Muscle and cerebral oxygenation respond differently to exercise,with muscle increasing O_(2) utilization and cerebral tissue increasing O_(2) delivery during exercise.However,at the exhaustion point,both muscle and cerebral oxygenation become compromised.This is characterized by a reduction in bloodflow and a decrease in O_(2) extraction in the muscle,while in the brain,oxygenation reaches a plateau or decline,potentially resulting in motor failure during exercise.
基金Supported by National Natural Science Foundation of China,No.82000625the Doctoral Scientific Research Foundation of Liaoning Province,No.2020-BS-109.
文摘This editorial comments on an article published in a recent issue of World Journal of Gastroenterology,entitled“Association of low muscle strength with metabolic dysfunction-associated fatty liver disease:A nationwide study”.We focused on the association between muscle strength and the incidence of non-alcoholic fatty liver disease(NAFLD)and metabolic-associated fatty liver disease(MAFLD),as well as the mechanisms underlying the correlation and related clinical applications.NAFLD,which is now redefined as MAFLD,is one of the most common chronic liver diseases globally with an increasing prevalence and is characterized by malnutrition,which may contribute to decreased muscle strength.Reduction of muscle strength reportedly has a pathogenesis similar to that of NAFLD/MAFLD,including insulin resistance,inflammation,sedentary behavior,as well as insufficient vitamin D.Multiple studies have focused on the relationship between sarcopenia or muscle strength and NAFLD.However,studies investigating the relationship between muscle strength and MAFLD are limited.Owing to the shortage of specific medications for NAFLD/MAFLD treatment,early detection is essential.Furthermore,the relationship between muscle strength and NAFLD/MAFLD suggests that improvements in muscle strength may have an impact on disease prevention and may provide novel insights into treatments including dietary therapy,as well as tailored physical activity.
基金Supported by National Natural Science Foundation of China(No.82070998)Young Scientists Fund of the National Natural Science Foundation of China(No.82101174)+3 种基金Program of Beijing Hospitals Authority(No.XMLX202103)Program of Beijing Municipal Science&Technology Commission(No.Z201100005520044)Capital Health Development Research Special Project(No.2022-1-2053)Beijing Hospitals Authority Youth Programme(No.QML20230205).
文摘AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-control study.Eighteen subjects with AACE and eighteen HCs were enrolled.MRI scanning data were conducted in target-controlled central gaze with a 3-Tesla magnetic resonance scanner.Extraocular muscles(EOMs)were scanned in contiguous image planes 2-mm thick spanning the EOM origins to the globe equator.To form posterior partial volumes(PPVs),the LR and MR cross-sections in the image planes 8,10,12,and 14 mm posterior to the globe were summed and multiplied by the 2-mm slice thickness.The data were classified according to the right eye,left eye,dominant eye,and non-dominant eye,and the differences in mean cross-sectional area,maximum cross-sectional area,and PPVs of the MR and LR muscle in the AACE group and HCs group were compared under the above classifications respectively.RESULTS:There were no significant differences between the two groups of demographic characteristics.The mean cross-sectional area of the LR muscle was significantly greater in the AACE group than that in the HCs group in the non-dominant eyes(P=0.028).The maximum cross-sectional area of the LR muscle both in the dominant and non-dominant eye of the AACE group was significantly greater than the HCs group(P=0.009,P=0.016).For the dominant eye,the PPVs of the LR muscle were significantly greater in the AACE than that in the HCs group(P=0.013),but not in the MR muscle(P=0.698).CONCLUSION:The size and volume of muscles dominant eyes of AACE subjects change significantly to overcome binocular diplopia.The LR muscle become larger to compensate for the enhanced convergence in the AACE.
文摘Purpose: The purpose of this study was to evaluate the effect of using a passive exoskeleton on lumbar muscle activity during lifting movements, and to determine whether muscle activity remains altered after exoskeleton removal. This study sought to identify the potential risks and benefits associated with the use of passive exoskeletons for the prevention and treatment of low back pain. Methods: Eighteen healthy adult participants lifted a 10 kg suitcase while wearing a passive exoskeleton. Muscle activity and postures were measured during lifting and before, during, and after exoskeleton use. This study examined whether the reduced muscle activity observed during exoskeleton use persisted after exoskeleton removal. Muscle activity was assessed using electromyography and postures were recorded using reflective markers and a camera. Results: The study found that Lumbar muscle activity decreased significantly (approximately 40%) during exoskeleton use compared to that without exoskeleton use. Importantly, lumbar muscle activity remained low after exoskeleton removal, at levels similar to those observed during exoskeleton use. This suggests that individuals adapted to the exoskeleton support and maintained altered muscle control, even without the exoskeleton. Conclusion: This study demonstrates that passive exoskeletons significantly reduce lumbar muscle activity during lifting tasks, and that this altered muscle control persists after exoskeleton removal. These findings contribute to the understanding of the risks and benefits of passive exoskeletons, potentially aiding their development and informing their use in the prevention and treatment of low back pain.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean Government(the Ministry of Science and ICT(MSIT))(No.2021R1A2C2006013)the Bio&Medical Technology Development Program of the NRF funded by the Korean government(MSIT)(No.RS-2023-00223591)the Korea Medical Device Development Fund grant funded by the Korean government(the MSIT,the MOTIE,the Ministry of Health and Welfare,the Ministry of Food and Drug Safety)(NTIS Number:9991006781,KMDF_PR_(2)0200901_0108)。
文摘Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.
基金supported by the National Natural Science Foundation of China(32271799,31870570)the Science and Technology Plan of Fujian Provincial,China(3502ZCQXT2022001,2020H4026,2022G02020 and 2022H6002)the Scientific Research Start–up Funding for Special Professor of Minjiang Scholars。
文摘Sodium metal batteries(SMBs)have attracted increasing attention over time due to their abundance of sodium resources and low cost.However,the widespread application of SMBs as a viable technology remains a great challenge,such as uneven metallic deposition and dendrite formation during cycling.Carbon skeletons as sodiophilic hosts can alleviate the dendrite formation during the plating/stripping.For the carbon skeleton,how to rationalize the design sodiophilic interfaces between the sodium metal and carbon species remains key to developing desirable Na anodes.Herein,we fabricated four kinds of structural features for carbon skeletons using conventional calcination and flash Joule heating.The roles of conductivity,defects,oxygen content,and the distribution of graphite for the deposition of metallic sodium were discussed in detail.Based on interface engineering,the J1600 electrode,which has abundant Na-C species on its surface,showed the highest sodiophilic.There are uniform and rich F-Na species distributed in the inner solid electrolyte interface layer.This study investigated the different Na-deposition behavior in carbon hosts with distinct graphitic arrangements to pave the way for designing and optimizing advanced electrode materials.
基金supported by the National Natural Science Foundation of China(No.52002320,and 51972267)the China Postdoctoral Science Foundation(No.2022M712574)+3 种基金the Science Foundation of Shaanxi Province(2022GD-TSLD-18,No.2023-JCZD-03)Natural Science Foundation of Shaanxi Province(No.2022GY-372,2021GY-153)Industrial Projects Foundation of Ankang Science and Technology Bureau(No.AK2020-GY02-2)the Platform Construction Projects and Technology Service Teams of Ankang University(No.2021AYPT12 and 2022TD07)。
文摘Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.
基金Supported by General Program of National Natural Science Foundation of China(31470075).
文摘[Objectives]To explore the effects of Shentong Zhuyu decoction combined with massage therapy in the treatment of exertional chronic lumbar muscle strain.[Methods]Sixty-four cases of exertional chronic lumbar muscle strain were randomly divided into two groups(32 cases each group).The patients in the control group only took celecoxib capsules,and those in the treatment group additionally took Shentong Zhuyu decoction combined with massage therapy.TCM syndrome score,lumbar function,hemorrheology index and clinical effect were compared between the two groups before and after treatment.[Results]After treatment,the TCM syndrome scores of lumbar distension/dull pain,tingling-like lumbago,adverse lateral turn,body weight loss,dark purple tongue,slow or astringent pulse,and Oswestry disability index(ODI)score in the treatment group were lower than those in the control group,and the levels of plasma viscosity,red blood cell aggregation index,platelet aggregation rate(PAG)and fibrinogen(Fib)were lower than those in the control group,showing statistical significance(P<0.05).The overall clinical effect distribution of the treatment group was better than that of the control group,and the difference was statistically significant(P<0.05).[Conclusions]Shentong Zhuyu decoction combined with massage therapy can effectively relieve the symptoms of patients with lumbago and improve the lumbar mobility function and hemorrheology,with obvious therapeutic effects in the treatment of exertional chronic lumbar muscle strain.
基金supported by the National Key Research and Development Program of China(2022YFF1000204)the National Natural Science Foundation of China(32102535)the Key Research and Development Program of Hainan province(ZDYF2023XDNY036)。
文摘Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear.This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers.We measured the growth performance of Cornish(CC)and White Plymouth Rock(RR)over a 42-d period.Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching(D21)and D42 for RNA-seq and ATAC-seq library construction.Results The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured,with CC outpacing RR in terms of weight at each stage of development.Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages,respectively.A total of 75,149 ATAC-seq peaks were annotated in promoter,exon,intron and intergenic regions,with a higher number of peaks in the promoter and intronic regions.The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis.The results spotlighted the upregulation of ACTC1 and FDPS at D21,which were primarily associated with muscle structure development by gene cluster enrichment.Additionally,a noteworthy upregulation of MUSTN1,FOS and TGFB3 was spotted in broiler chickens at D42,which were involved in cell differentiation and muscle regeneration after injury,suggesting a regulatory role of muscle growth and repair.Conclusions This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration.Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration.These findings provide a foundation for future research to investigate the functional aspects of muscle development.