Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components...Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components, anchor and so on is modeled by applying multi-body dynamics method. The motion equations are developed in discrete node description and fully Cartesian coordinates. Then numerical method is used to solve the ordinary differential equations and dynamics simulations are achieved while anchor is casting from board. The trajectories and velocities of different nodes without current and with current in buoy system are obtained. The transient tension force of each part of the cable is analyzed in the process of deployment. Numerical results indicate that the transient payload increases to a peak value when the anchor is touching the seabed and the maximum tension force will vary with different floating configuration. This work is helpful for design and deployment planning of buoy system.展开更多
Multi-body dynamics,relative coordinates and graph theory are combined to analyze the structure of a vehicle suspension.The dynamic equations of the left front suspension system are derived for modeling.First,The pure...Multi-body dynamics,relative coordinates and graph theory are combined to analyze the structure of a vehicle suspension.The dynamic equations of the left front suspension system are derived for modeling.First,The pure tire theory model is used as the input criteria of the suspension multibody system dynamic model in order to simulate the suspension K&C characteristics test.Then,it is important to verify the accuracy of this model by comparing and analyzing the experimental data and simulation results.The results show that the model has high precision and can predict the performance of the vehicle.It also provides a new solution for the vehicle dynamic modeling.展开更多
The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed par...The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained. These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance.展开更多
In lifting sub-system of deep-sea mining system, spherical joint is used to connect lifting pipes to replace fixed joint. Based on Dynamics of Flexible Multi-body systems, the mechanics model of articulated lifting sy...In lifting sub-system of deep-sea mining system, spherical joint is used to connect lifting pipes to replace fixed joint. Based on Dynamics of Flexible Multi-body systems, the mechanics model of articulated lifting system is established. Under the four-grade and six-grade oceanic condition, dynamic responses of lifting system are simulated and experiment verified. The simulation results are consistent with experimental ones. The maximum moment of flexion is 322 kN-m on the first pipe under six-grade sea condition. It is seen that the articulated connection can reduce the moment of flexion. The bending deformation of pipe center is researched, and the maximum is 0. 000479 m on the first pipe. Deformation has a little effect on the motion of system. It is feasible to analyze articulated lifting system by applying the theory of flexible multi-body dynamics. The articulated lifting system is obviously better than the fixed one.展开更多
For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element m...For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element method of dynamic model is adopted to model the bridge. Taking Yujiang River Bridge on Nanning-Guangzhou railway line in China as study background, the?refined numerical simulation model of whole vehicle and whole bridge system for coupled vibration analysis is set up. The dynamic analysis model of the cable-stayed bridge is established by finite element method, and the natural vibration properties of the bridge are analyzed. The German ICE Electric Multiple Unit (EMU) train refined three-dimensional space vehicle model is set up by multi-system dynamics software SIMPACK, and the multiple non-linear properties are considered. The space vibration responses are calculated by co-simulation based on multi-body system dynamics and finite element method when the ICE EMU train passes the long span cable-stayed bridge at different speeds. In order to test if the bridge has the sufficient lateral or vertical rigidity and the operation stability is fine. The calculation results show: The operation safety can be guaranteed, and comfort?index is “excellent”. The bridge has sufficient rigidity, and vibration is in good condition.展开更多
Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in...Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in an especial linking mode. And a dynamic model is established, The problems of computing vibration characteristics are resolved by using multi-body system transfer matrix method, Resutts show that the mainshaft system of NC lathe is in the stable and reliable working area all the time. The method is simple and easy, the idea is clear. In addition, the method can be easily used and popularized in the other multi-body system.展开更多
In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with som...In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with some subsystems to form the complete integrated deep ocean mining pilot system and perform dynamic analysis, a new method for the dynamic modeling and analysis of the miner is proposed and developed in this paper, resulting in a simplified 3D single-body vehicle model with three translational and three rotational degrees of freedom, while the track-terrain interaction model is built by partitioning the track-terrain interface into discrete elements with parameterized force dements built on the theory of terramechanics acting on each discrete dement. To evaluate and verify the correctness and effectiveness of this new modeling and analysis method, typical comparative studies with regard to computational efficiency and solution accuracy are carried out between the traditional modeling method of building the tracked vehicle as a multi-body model and the new modeling method. In full consideration of the particMar structure design of the pilot miner, the special characteristics of the seafioor soil and the hydrodynamic force of near-seafloor currnt, the dynamic simulation analysis of the miner is performed and discussed, which can provide useful guidance and reference for the practical miner system in design and operation. This new method can not only realize the rapid dynamic simulation analysis of the miner but also make possible the integration and rapid dynamic analysis of the complete integrated deep ocean mining pilot system in further researches.展开更多
In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are t...In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.展开更多
A nonlinear dynamic model of a thin rectangular plate attached to a moving rigid was established by employing the general Hamilton's variational principle. Based on the new model, it is proved theoretically that both...A nonlinear dynamic model of a thin rectangular plate attached to a moving rigid was established by employing the general Hamilton's variational principle. Based on the new model, it is proved theoretically that both phenomena of dynamic stiffening and dynamic softening can occur in the plate when the rigid undergoes different large overall motions including overall translational and rotary motions. It was also proved that dynamic softening effect even can make the trivial equilibrium of the plate lose its stability through bifurcation. Assumed modes method was employed to validate the theoretical result and analyze the approximately critical bifurcation value and the postbuckling equilibria.展开更多
For the offshore wind turbines installed in earthquake areas,their operation is affected by seismic loads in addition to wind and wave loads.Therefore,it is necessary to study the dynamic responses and vibration contr...For the offshore wind turbines installed in earthquake areas,their operation is affected by seismic loads in addition to wind and wave loads.Therefore,it is necessary to study the dynamic responses and vibration control of the wind turbines.In previous studies,the structural responses of offshore wind turbines are usually investigated in the parked case,while the blade rotation effect is usually not considered.The evaluation on the structural responses may be inaccurate under this condition,further affecting the evaluation on the vibration control performance of a control system.In view of it,this paper established a complete multi-body model of a fixed-bottom offshore wind turbine considering pile-soil interaction,and then performed simulations when the wind turbine was subjected to multiple external excitations.Continued,a single tuned mass damper(STMD)system and a multiple tuned mass dampers(MTMDs)system were applied to control structural vibrations of the wind turbine.Then,based on the construction of a simplified main structure-TMD system,TMD parameters were optimized.Finally,twelve load cases including operating and parked conditions were selected to perform simulations.Results show that the influence of the seismic excitation on blade responses is greater under the parked condition than that under the operating condition.Moreover,STMD/MTMDS exhibit better performance under the parked condition than that under the operating condition.Compared with STMD,MTMDS can better suppress the vibrations at both the fundamental and high-order modes,and exhibits significant robustness under the condition of changing soil parameters.展开更多
In order to reduce the labor intensity,improve the production efficiency and enhance the equipment stability and the branding accuracy of the pattern,we have completed a double-row high-efficiency wooden ice cream sti...In order to reduce the labor intensity,improve the production efficiency and enhance the equipment stability and the branding accuracy of the pattern,we have completed a double-row high-efficiency wooden ice cream stick branding machine structural design.The rigid-flexible coupling dynamics model is established and the movement and stress of the first-stage chain drive are calculated and analyzed.The comparison of the theoretical calculation results shows that the dynamic modeling and the structural design of the equipment are reasonable and the result of dynamic calculation also provides the basis of load data for dynamic strength calculation of structural components.展开更多
Abstract: This paper presents a coupled multi-body and FEM (finite element method)-BEM (boundary element method) methodology used to carry out a comprehensive NVH (noise, vibration and harshness) investigation ...Abstract: This paper presents a coupled multi-body and FEM (finite element method)-BEM (boundary element method) methodology used to carry out a comprehensive NVH (noise, vibration and harshness) investigation of a four-cylinder internal combustion engine prototype. Firstly, a MBDS (multi-body dynamic simulation) of the internal combustion engine has been carried out, at a defined operating condition, in order to determine the excitation force of the powertrain exciting the cylinder block. In this way, the dynamics of the engine powertrain have been described taking into account both the effects of the gas forces of the combustion process and the inertia forces of the moving parts. Afterwards, the cylinder block excitation forces have been used to evaluate the engine block vibrations and to predict the external noise radiated with both the well-known ATV (acoustic transfer vectors) and MATV (modal acoustic transfer vectors) methodologies at a distance of 1 m from the engine, according to the standard ISO 3744. The dynamics of the engine powertrain and its vibro-acoustic behaviour have been described using LMS (learning management system) Engineering Innovation Virtual.Lab tools.展开更多
For the further design of the particular gearbox components, the alternating cycles of the respective application mean an often insufficient knowledge of the actual loads occuring in use. Especially for the applicatio...For the further design of the particular gearbox components, the alternating cycles of the respective application mean an often insufficient knowledge of the actual loads occuring in use. Especially for the application within lifting units, such dynamic load cycles are very difficult to pre-estimate. The so-called slack rope test represents the most critical point in the load cycle and provides a special challenge for the gearbox design. Because of this missing expert knowledge, a test bench of such an application is installed and applied to practical movement cycles. Besides the test bench, a multi-body simulation model of the whole system is mapped within the MBS (multi-body simulation) environment SIMPACK. To verify this simulation model, the results are compared with the respective measurements of the test bench. These comparisons show very good agreements. Thus, one of the major advantages of using such simulation tools is the possibility to re-evaluate the internal and external loads during the whole design process. Finally, these simulations serve as a clarification of the load spectrum of the different drivetrain components. Gearbox series or different modifications of the design can now be analyzed prospectively without extensive testing.展开更多
In this study,the effects of in vivo(head flexion-extension,lateral bending,and axial rotation)and in vitro(ISO 18192-1)working conditions on the wear of ultrahigh mo-lecular weight polyethylene(UHWMPE)-based cervical...In this study,the effects of in vivo(head flexion-extension,lateral bending,and axial rotation)and in vitro(ISO 18192-1)working conditions on the wear of ultrahigh mo-lecular weight polyethylene(UHWMPE)-based cervical disc prosthesis were studied via numerical simulation.A finite-element-based wear prediction framework was built by using a sliding distance and contact area dependent Archard wear law.Moreover,a pre-developed cervical spine multi-body dynamics model was incorporated to obtain the in vivo conditions.Contact mechanic analysis stated that in vitro conditions normally led to a higher contact stress and a longer sliding distance,with oval or crossing-path-typed sliding track.In contrast,in vivo conditions led to a curvilinear-typed sliding track.In general,the predicted in vivo wear rate was one order of magnitude smaller than that of in vitro.According to the yearly occurrence of head movement,the estimated total in vivo wear rate was 0.595 mg/annual.While,the wear rate given by the ISO standard test condition was 3.32 mg/annual.There is a significant impact of loading and kinematic condition on the wear of UHMWPE prosthesis.The work conducted in the present study provided a feasible way for quantitatively assessing the wear of joint prosthesis.展开更多
Research provides a theoretical basis for an Earth system multi-body mechanics model and its dynamics, including the Earth system multi-body restriction function and its power, Earth system multi-body restriction unde...Research provides a theoretical basis for an Earth system multi-body mechanics model and its dynamics, including the Earth system multi-body restriction function and its power, Earth system multi-body restriction under decreasing generalized velocity and decreasing partial palstance, the Earth system multi-body decreasing generalized force, a moving mechanics function, and the Earth system multi-body restriction's wattful and wattless forces.展开更多
Research on the elasticity and plasticity dynamics of the Earth multi-body system, including the Earth multi-body system stratum-block's equivalent inertia force system and generalized inertia force, the Earth mul...Research on the elasticity and plasticity dynamics of the Earth multi-body system, including the Earth multi-body system stratum-block's equivalent inertia force system and generalized inertia force, the Earth multi-body system stratum-block's equivalent inertia force system expressed with partial velocity and partial palstance, and Earth multi-body system generalized inertia force expressed with partial velocity and partial palstance. This research provides a theoretical foundation for further investigation of Earth multi-body dynamics.展开更多
A method, which compares the angular acceleration and vibration spectrums of shafts and gears with physical characteristics of gearbox as tooth numbers and speed ratios, is proposed to find the source of gear rattle v...A method, which compares the angular acceleration and vibration spectrums of shafts and gears with physical characteristics of gearbox as tooth numbers and speed ratios, is proposed to find the source of gear rattle vibration. A mathematical and multi-body dynamics co-simulation model is built to reproduce the gear rattle phenomenon of one typical type of manual transmission. In the model, multi-body dynamics part is used for rotational motion and engagement simulation of gearbox shafts and gears, while mathematical part for control and data processing. The simulation results show that the sound source of the gear rattle from the first gear to the third gear is similar to the experimental results;different parameters like rotating damping, contact stiffness,contact damping, inertia moment and torque fluctuation making effects on gear rattle vibration strength are researched and simulated. The comparison of the simulation and experimental results shows that this method can provide recommendations for solving practical gear rattle problems.展开更多
With the benefits of small turning radius and high trafficability, the articulated steering half-track tractor had been widely utilized in orchard and small spaced farmland. To study the dynamic performance of the art...With the benefits of small turning radius and high trafficability, the articulated steering half-track tractor had been widely utilized in orchard and small spaced farmland. To study the dynamic performance of the articulated steering half-track tractor and provide a model basis for studying the path tracking control, an accurate multi-body dynamic model of the tractor was required. In this study, the crucial parameters in the dynamic model construction of the tractor were investigated. Firstly, the topology model of the components of the half-track tractor was built by RecurDyn, in which the movement subs and driver functions were given. Secondly, considering the difference of dynamic characteristic of the articulated steering tractor with respect to different pavement hardnesses, the soft and hard pavement models were constructed by employing the harmonic superposition method. Finally, the simulations of the half-track tractor under straight-line and swerve had been conducted on the two types of pavements, and the simulation results were compared with the experimental and theoretical results. The results indicated that the average speed error of the dynamic model on hard pavement and farmland soft pavement were 2.7% and 2.1% compared with the real tractor tests. At the same time, the straight-line driving offset errors of the dynamic model on the two pavements were 1.6% and 3.8% for the front wheels and the rear wheels offset errors were 3.9% and 2.4%, respectively. Furthermore, the turning radius error under front wheel steering was 8.2% and the error under articulated steering was 5.3%. It is proved that the established dynamic model had high accuracy, which provides an efficient approach to analyze the dynamic features of the half-track tractor.展开更多
目的探讨先天性髋关节发育不良(developmental dysplasia of the hip,DDH)患者全髋关节置换(total hip arthroplasty,THA)中股骨偏心距的生物力学影响。方法以1例CroweⅣ型DDH女性患者的相关数据为材料,基于骨肌多体动力学软件AnyBody,...目的探讨先天性髋关节发育不良(developmental dysplasia of the hip,DDH)患者全髋关节置换(total hip arthroplasty,THA)中股骨偏心距的生物力学影响。方法以1例CroweⅣ型DDH女性患者的相关数据为材料,基于骨肌多体动力学软件AnyBody,建立与患者对应的个体化THA下肢骨肌多体动力学模型,分析股骨偏心距在±20 mm内变化时髋关节力、外展肌力的改变。同时建立不同偏心距下股骨-S-ROM假体动态有限元模型,由骨肌模型计算的不同偏心距下水平匀速行走步态内的动态载荷被加载至相应的有限元模型,对S-ROM假体柄与袖套之间的应力、接触应力和微动进行分析。结果股骨偏心距±20 mm内的变化对髋关节力峰值影响较小,股骨偏心距减小会导致外展肌力峰值显著增加,股骨偏心距增大会导致柄的最大应力、接触应力和微动显著增加。结论 DDH患者THA中股骨偏心距改变对外展肌力和假体最大应力、接触应力与微动影响显著,医生应予以考虑。展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51175484)the Science Foundation of Shandong Province (Grant No. ZR2010EM052)
文摘Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components, anchor and so on is modeled by applying multi-body dynamics method. The motion equations are developed in discrete node description and fully Cartesian coordinates. Then numerical method is used to solve the ordinary differential equations and dynamics simulations are achieved while anchor is casting from board. The trajectories and velocities of different nodes without current and with current in buoy system are obtained. The transient tension force of each part of the cable is analyzed in the process of deployment. Numerical results indicate that the transient payload increases to a peak value when the anchor is touching the seabed and the maximum tension force will vary with different floating configuration. This work is helpful for design and deployment planning of buoy system.
基金Supported by the National Key Research and Development Program of China(2017YFB0103801)
文摘Multi-body dynamics,relative coordinates and graph theory are combined to analyze the structure of a vehicle suspension.The dynamic equations of the left front suspension system are derived for modeling.First,The pure tire theory model is used as the input criteria of the suspension multibody system dynamic model in order to simulate the suspension K&C characteristics test.Then,it is important to verify the accuracy of this model by comparing and analyzing the experimental data and simulation results.The results show that the model has high precision and can predict the performance of the vehicle.It also provides a new solution for the vehicle dynamic modeling.
文摘The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained. These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance.
基金This research project was financially supported by China Ocean Mineral Resources R&D Association(Grant No.DY105-03-02-17)Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20060008025)
文摘In lifting sub-system of deep-sea mining system, spherical joint is used to connect lifting pipes to replace fixed joint. Based on Dynamics of Flexible Multi-body systems, the mechanics model of articulated lifting system is established. Under the four-grade and six-grade oceanic condition, dynamic responses of lifting system are simulated and experiment verified. The simulation results are consistent with experimental ones. The maximum moment of flexion is 322 kN-m on the first pipe under six-grade sea condition. It is seen that the articulated connection can reduce the moment of flexion. The bending deformation of pipe center is researched, and the maximum is 0. 000479 m on the first pipe. Deformation has a little effect on the motion of system. It is feasible to analyze articulated lifting system by applying the theory of flexible multi-body dynamics. The articulated lifting system is obviously better than the fixed one.
文摘For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element method of dynamic model is adopted to model the bridge. Taking Yujiang River Bridge on Nanning-Guangzhou railway line in China as study background, the?refined numerical simulation model of whole vehicle and whole bridge system for coupled vibration analysis is set up. The dynamic analysis model of the cable-stayed bridge is established by finite element method, and the natural vibration properties of the bridge are analyzed. The German ICE Electric Multiple Unit (EMU) train refined three-dimensional space vehicle model is set up by multi-system dynamics software SIMPACK, and the multiple non-linear properties are considered. The space vibration responses are calculated by co-simulation based on multi-body system dynamics and finite element method when the ICE EMU train passes the long span cable-stayed bridge at different speeds. In order to test if the bridge has the sufficient lateral or vertical rigidity and the operation stability is fine. The calculation results show: The operation safety can be guaranteed, and comfort?index is “excellent”. The bridge has sufficient rigidity, and vibration is in good condition.
基金This project is supported by National Natural Science Foundation of China (No.50375026)Provincial Fifteen Great Public Bidding Items of Jiangsu (No.BE2001068).
文摘Based on multi-body system theory and the mainshafl system of precision NC lathe as object investigated, it is treated as a coupled rigid-flexible multi-body system which is made up of some rigid and elastic bodies in an especial linking mode. And a dynamic model is established, The problems of computing vibration characteristics are resolved by using multi-body system transfer matrix method, Resutts show that the mainshaft system of NC lathe is in the stable and reliable working area all the time. The method is simple and easy, the idea is clear. In addition, the method can be easily used and popularized in the other multi-body system.
基金supported by the National High Technology Research and Development Program of China(863 Program, Grant No.2006AA09Z240)the National Deep-Sea Technology Project of Development and Re-search(Grant No.DYXM-115-04-02-01)
文摘In order to achieve the complex dynamic analysis of the self-propelled seafloor pilot miner moving on the seafloor of extremely cohesive soft soil and further to make it possible to integrate the miner system with some subsystems to form the complete integrated deep ocean mining pilot system and perform dynamic analysis, a new method for the dynamic modeling and analysis of the miner is proposed and developed in this paper, resulting in a simplified 3D single-body vehicle model with three translational and three rotational degrees of freedom, while the track-terrain interaction model is built by partitioning the track-terrain interface into discrete elements with parameterized force dements built on the theory of terramechanics acting on each discrete dement. To evaluate and verify the correctness and effectiveness of this new modeling and analysis method, typical comparative studies with regard to computational efficiency and solution accuracy are carried out between the traditional modeling method of building the tracked vehicle as a multi-body model and the new modeling method. In full consideration of the particMar structure design of the pilot miner, the special characteristics of the seafioor soil and the hydrodynamic force of near-seafloor currnt, the dynamic simulation analysis of the miner is performed and discussed, which can provide useful guidance and reference for the practical miner system in design and operation. This new method can not only realize the rapid dynamic simulation analysis of the miner but also make possible the integration and rapid dynamic analysis of the complete integrated deep ocean mining pilot system in further researches.
基金supported by the National Science Foundation of China (Grants 11132007,11272203)
文摘In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y.
基金Project supported by the National Natural Science Foundation of China (No.10272002)the Doctoral Foundation of Ministry of Education of China (No.20020001032)
文摘A nonlinear dynamic model of a thin rectangular plate attached to a moving rigid was established by employing the general Hamilton's variational principle. Based on the new model, it is proved theoretically that both phenomena of dynamic stiffening and dynamic softening can occur in the plate when the rigid undergoes different large overall motions including overall translational and rotary motions. It was also proved that dynamic softening effect even can make the trivial equilibrium of the plate lose its stability through bifurcation. Assumed modes method was employed to validate the theoretical result and analyze the approximately critical bifurcation value and the postbuckling equilibria.
基金sponsored by the Scientific Research Foundation of Chongqing University of Technology (Grant No. 2020ZDZ023)the Project of Science and Technology Research Program of Chongqing Education Commission of China (Grant No. KJQN202101133)+2 种基金the National Natural Science Foundation Cultivation Program of Chongqing University of Technology (Grant No.2021PYZ14)Shanghai Engineering Research Center of Marine Renewable Energy (Grant No. 19DZ2254800)the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201805801)
文摘For the offshore wind turbines installed in earthquake areas,their operation is affected by seismic loads in addition to wind and wave loads.Therefore,it is necessary to study the dynamic responses and vibration control of the wind turbines.In previous studies,the structural responses of offshore wind turbines are usually investigated in the parked case,while the blade rotation effect is usually not considered.The evaluation on the structural responses may be inaccurate under this condition,further affecting the evaluation on the vibration control performance of a control system.In view of it,this paper established a complete multi-body model of a fixed-bottom offshore wind turbine considering pile-soil interaction,and then performed simulations when the wind turbine was subjected to multiple external excitations.Continued,a single tuned mass damper(STMD)system and a multiple tuned mass dampers(MTMDs)system were applied to control structural vibrations of the wind turbine.Then,based on the construction of a simplified main structure-TMD system,TMD parameters were optimized.Finally,twelve load cases including operating and parked conditions were selected to perform simulations.Results show that the influence of the seismic excitation on blade responses is greater under the parked condition than that under the operating condition.Moreover,STMD/MTMDS exhibit better performance under the parked condition than that under the operating condition.Compared with STMD,MTMDS can better suppress the vibrations at both the fundamental and high-order modes,and exhibits significant robustness under the condition of changing soil parameters.
基金Key Scientific Research Project of the Inner Mongolia Autonomous Region University,China(No.NJZZ18075)Natural Science Fund of Inner Mongolia Autonomous Region,China(No.2018M S05060)Education Scientific Research 13th Five-Year Plan of Inner Mongolia Autonomous Region,China(No.NGJGH2018066)
文摘In order to reduce the labor intensity,improve the production efficiency and enhance the equipment stability and the branding accuracy of the pattern,we have completed a double-row high-efficiency wooden ice cream stick branding machine structural design.The rigid-flexible coupling dynamics model is established and the movement and stress of the first-stage chain drive are calculated and analyzed.The comparison of the theoretical calculation results shows that the dynamic modeling and the structural design of the equipment are reasonable and the result of dynamic calculation also provides the basis of load data for dynamic strength calculation of structural components.
文摘Abstract: This paper presents a coupled multi-body and FEM (finite element method)-BEM (boundary element method) methodology used to carry out a comprehensive NVH (noise, vibration and harshness) investigation of a four-cylinder internal combustion engine prototype. Firstly, a MBDS (multi-body dynamic simulation) of the internal combustion engine has been carried out, at a defined operating condition, in order to determine the excitation force of the powertrain exciting the cylinder block. In this way, the dynamics of the engine powertrain have been described taking into account both the effects of the gas forces of the combustion process and the inertia forces of the moving parts. Afterwards, the cylinder block excitation forces have been used to evaluate the engine block vibrations and to predict the external noise radiated with both the well-known ATV (acoustic transfer vectors) and MATV (modal acoustic transfer vectors) methodologies at a distance of 1 m from the engine, according to the standard ISO 3744. The dynamics of the engine powertrain and its vibro-acoustic behaviour have been described using LMS (learning management system) Engineering Innovation Virtual.Lab tools.
文摘For the further design of the particular gearbox components, the alternating cycles of the respective application mean an often insufficient knowledge of the actual loads occuring in use. Especially for the application within lifting units, such dynamic load cycles are very difficult to pre-estimate. The so-called slack rope test represents the most critical point in the load cycle and provides a special challenge for the gearbox design. Because of this missing expert knowledge, a test bench of such an application is installed and applied to practical movement cycles. Besides the test bench, a multi-body simulation model of the whole system is mapped within the MBS (multi-body simulation) environment SIMPACK. To verify this simulation model, the results are compared with the respective measurements of the test bench. These comparisons show very good agreements. Thus, one of the major advantages of using such simulation tools is the possibility to re-evaluate the internal and external loads during the whole design process. Finally, these simulations serve as a clarification of the load spectrum of the different drivetrain components. Gearbox series or different modifications of the design can now be analyzed prospectively without extensive testing.
基金National Natural Science Foundation of China,Grant/Award Number:51675508Natural Science Foundation of Shaanxi Province,China,Grant/Award Number:2020JQ-728。
文摘In this study,the effects of in vivo(head flexion-extension,lateral bending,and axial rotation)and in vitro(ISO 18192-1)working conditions on the wear of ultrahigh mo-lecular weight polyethylene(UHWMPE)-based cervical disc prosthesis were studied via numerical simulation.A finite-element-based wear prediction framework was built by using a sliding distance and contact area dependent Archard wear law.Moreover,a pre-developed cervical spine multi-body dynamics model was incorporated to obtain the in vivo conditions.Contact mechanic analysis stated that in vitro conditions normally led to a higher contact stress and a longer sliding distance,with oval or crossing-path-typed sliding track.In contrast,in vivo conditions led to a curvilinear-typed sliding track.In general,the predicted in vivo wear rate was one order of magnitude smaller than that of in vitro.According to the yearly occurrence of head movement,the estimated total in vivo wear rate was 0.595 mg/annual.While,the wear rate given by the ISO standard test condition was 3.32 mg/annual.There is a significant impact of loading and kinematic condition on the wear of UHMWPE prosthesis.The work conducted in the present study provided a feasible way for quantitatively assessing the wear of joint prosthesis.
基金supported by the International Projects cooperated with China,America,German and Canada(INDEPTH)(Grant No.9501207)the National Natural Science Foundation of China(Grant No.49732100)+1 种基金the Knowledge Innovation Project of Chinese Academy of Sciences(Grant No.CX000018)the Chinese Sciences Foundation Postdoctoral Level Funded Project(Grant No.9 Chinese Postdoctoral Funded(1998)).
文摘Research provides a theoretical basis for an Earth system multi-body mechanics model and its dynamics, including the Earth system multi-body restriction function and its power, Earth system multi-body restriction under decreasing generalized velocity and decreasing partial palstance, the Earth system multi-body decreasing generalized force, a moving mechanics function, and the Earth system multi-body restriction's wattful and wattless forces.
基金supported by the International Projects cooperated with China,America,German and Canada(INDEPTH)(Grant No.9501207)the National Natural Science Foundation of China(Grant No.49732100)+1 种基金the Knowledge Innovation Project of Chinese Academy of Sciences(Grant No.CX000018)the Chinese Sciences Foundation Postdoctoral Level Funded Project(Grant No.9 Chinese Postdoctoral Funded(1998)).
文摘Research on the elasticity and plasticity dynamics of the Earth multi-body system, including the Earth multi-body system stratum-block's equivalent inertia force system and generalized inertia force, the Earth multi-body system stratum-block's equivalent inertia force system expressed with partial velocity and partial palstance, and Earth multi-body system generalized inertia force expressed with partial velocity and partial palstance. This research provides a theoretical foundation for further investigation of Earth multi-body dynamics.
文摘A method, which compares the angular acceleration and vibration spectrums of shafts and gears with physical characteristics of gearbox as tooth numbers and speed ratios, is proposed to find the source of gear rattle vibration. A mathematical and multi-body dynamics co-simulation model is built to reproduce the gear rattle phenomenon of one typical type of manual transmission. In the model, multi-body dynamics part is used for rotational motion and engagement simulation of gearbox shafts and gears, while mathematical part for control and data processing. The simulation results show that the sound source of the gear rattle from the first gear to the third gear is similar to the experimental results;different parameters like rotating damping, contact stiffness,contact damping, inertia moment and torque fluctuation making effects on gear rattle vibration strength are researched and simulated. The comparison of the simulation and experimental results shows that this method can provide recommendations for solving practical gear rattle problems.
基金supported by the National Key R&D Program of China (Grant No.2022YFD2202102).
文摘With the benefits of small turning radius and high trafficability, the articulated steering half-track tractor had been widely utilized in orchard and small spaced farmland. To study the dynamic performance of the articulated steering half-track tractor and provide a model basis for studying the path tracking control, an accurate multi-body dynamic model of the tractor was required. In this study, the crucial parameters in the dynamic model construction of the tractor were investigated. Firstly, the topology model of the components of the half-track tractor was built by RecurDyn, in which the movement subs and driver functions were given. Secondly, considering the difference of dynamic characteristic of the articulated steering tractor with respect to different pavement hardnesses, the soft and hard pavement models were constructed by employing the harmonic superposition method. Finally, the simulations of the half-track tractor under straight-line and swerve had been conducted on the two types of pavements, and the simulation results were compared with the experimental and theoretical results. The results indicated that the average speed error of the dynamic model on hard pavement and farmland soft pavement were 2.7% and 2.1% compared with the real tractor tests. At the same time, the straight-line driving offset errors of the dynamic model on the two pavements were 1.6% and 3.8% for the front wheels and the rear wheels offset errors were 3.9% and 2.4%, respectively. Furthermore, the turning radius error under front wheel steering was 8.2% and the error under articulated steering was 5.3%. It is proved that the established dynamic model had high accuracy, which provides an efficient approach to analyze the dynamic features of the half-track tractor.
基金supported by National Natural Science Foundation of China (No.51065026)Doctoral Foundation of Ministry of Education of China (No.20106501110001)Natural Science Foundation of Autonomous Region (No.2011211A002)
文摘目的探讨先天性髋关节发育不良(developmental dysplasia of the hip,DDH)患者全髋关节置换(total hip arthroplasty,THA)中股骨偏心距的生物力学影响。方法以1例CroweⅣ型DDH女性患者的相关数据为材料,基于骨肌多体动力学软件AnyBody,建立与患者对应的个体化THA下肢骨肌多体动力学模型,分析股骨偏心距在±20 mm内变化时髋关节力、外展肌力的改变。同时建立不同偏心距下股骨-S-ROM假体动态有限元模型,由骨肌模型计算的不同偏心距下水平匀速行走步态内的动态载荷被加载至相应的有限元模型,对S-ROM假体柄与袖套之间的应力、接触应力和微动进行分析。结果股骨偏心距±20 mm内的变化对髋关节力峰值影响较小,股骨偏心距减小会导致外展肌力峰值显著增加,股骨偏心距增大会导致柄的最大应力、接触应力和微动显著增加。结论 DDH患者THA中股骨偏心距改变对外展肌力和假体最大应力、接触应力与微动影响显著,医生应予以考虑。