基金supported by the Natural Science Foundation of Hebei Province,China(B2014209182)Youth Foundation of Hebei Education Department,China(QN2014045)College Students'Innovative Entrepreneurial Training Plan Program of North China University of Science and Technology,China(X2015117)~~
文摘水热法结合原位沉淀法成功制备新型磁性溴化银/磷酸银/铁酸锌(AgBr/Ag_3PO_4/ZnFe_2O_4)复合催化剂,并通过X射线衍射、能量色散X射线、场发射扫描电子显微镜、透射电子显微镜和紫外-可见漫反射光谱对其晶相结构、组成、形貌及吸光性能进行了表征。在可见光照射下,所制备的AgBr/Ag_3PO_4/ZnFe_2O_4复合催化剂光催化降解罗丹明B(RhB)的活性优于Ag_3PO_4/ZnFe_2O_4、AgBr/ZnFe_2O_4和P25 TiO_2。在酸性和碱性溶液中,AgBr/Ag_3PO_4/ZnFe_2O_4光催化剂呈现出优良光催化性能。在AgBr/Ag_3PO_4/ZnFe_2O_4体系中,光催化降解Rh B的速率随着反应体系温度的升高而增大,由阿伦尼乌斯方程计算获得反应体系活化能为31.9 k J?mol^(-1)。AgBr/Ag_3PO_4/ZnFe_2O_4复合材料优异的可见光催化活性归因于光生电荷的有效分离,所产生的超氧自由基和空穴是Rh B降解的主要活性物种。
文摘用电化学方法制备Ag3PO4/Ni薄膜,以扫描电子显微镜(SEM)、X射线衍射(XRD)和紫外-可见漫反射光谱(UV-Vis DRS)对薄膜的表面形貌、晶相结构、光谱特性及能带结构进行了表征,以罗丹明B为模拟污染物对薄膜的光催化活性和稳定性进行了测定,采用向溶液中加入活性物种捕获剂的方法对薄膜光催化降解机理进行了探索。结果表明:最佳工艺下制备的Ag3PO4/Ni薄膜具有致密的层状表面结构,是由多晶纳米颗粒构成的薄膜。薄膜具有较高的光催化活性和突出的光催化稳定性,可见光下催化作用60 min,薄膜光催化罗丹明B的降解率是多孔P25 Ti O2/ITO纳米薄膜(自制)的2.3倍;在保持薄膜光催化活性基本不变的前提下可循环使用6次。给出了可见光下薄膜光催化降解罗丹明B的反应机理。
文摘采用电化学方法制备Ag3PO4/Ni薄膜,以扫描电镜(SEM)、X射线衍射(XRD)和紫外-可见漫反射光谱(UV-Vis DRS)对薄膜的表面形貌、晶相结构、光谱特性及能带结构进行表征,以罗丹明B为模拟污染物对薄膜的光电催化活性和稳定性进行测定,采用向溶液中加入活性物种捕获剂和通氮除氧方法对薄膜的光催化降解机理进行探索,并提出光电催化降解罗丹明B的反应机理。结果表明:最佳工艺下制备的Ag3PO4/Ni薄膜具有致密的层状表面结构,是由多晶纳米颗粒构成的薄膜。该薄膜具有显著的光电催化活性,在最佳阳极偏压下,光电催化罗丹明B的降解率是多孔P25 Ti O2/ITO薄膜的6.69倍;相对于未加偏压的光催化,降解率提高了5.34倍,并且具有突出的光电协同效应。同时,该薄膜具有优异的光催化和光电催化稳定性。在0.1 V阳极偏压下,可使光催化稳定性提高近一倍。