期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Music Genre Classification Using DenseNet and Data Augmentation 被引量:1
1
作者 Dao Thi Le Thuy Trinh Van Loan +1 位作者 Chu Ba Thanh Nguyen Hieu Cuong 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期657-674,共18页
It can be said that the automatic classification of musical genres plays a very important role in the current digital technology world in which the creation,distribution,and enjoyment of musical works have undergone h... It can be said that the automatic classification of musical genres plays a very important role in the current digital technology world in which the creation,distribution,and enjoyment of musical works have undergone huge changes.As the number ofmusic products increases daily and themusic genres are extremely rich,storing,classifying,and searching these works manually becomes difficult,if not impossible.Automatic classification ofmusical genres will contribute to making this possible.The research presented in this paper proposes an appropriate deep learning model along with an effective data augmentation method to achieve high classification accuracy for music genre classification using Small Free Music Archive(FMA)data set.For Small FMA,it is more efficient to augment the data by generating an echo rather than pitch shifting.The research results show that the DenseNet121 model and data augmentation methods,such as noise addition and echo generation,have a classification accuracy of 98.97%for the Small FMA data set,while this data set lowered the sampling frequency to 16000 Hz.The classification accuracy of this study outperforms that of the majority of the previous results on the same Small FMA data set. 展开更多
关键词 Music genre classification Small FMA DenseNet CNN GRU data augmentation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部