In order to generate a mutant of Bacillus subtilis with enhanced surface activity through low energy nitrogen ion beam implantation, the effects of energy and dose of ions implanted were studied. The morphological cha...In order to generate a mutant of Bacillus subtilis with enhanced surface activity through low energy nitrogen ion beam implantation, the effects of energy and dose of ions implanted were studied. The morphological changes in the bacteria were observed by scanning electron microscope (SEM). The optimum condition of ions implantation, 20 keV of energy and 2.6 × 10^15N^+/cm^2 in dose, was determined. A mutant, B.s-E-8 was obtained, whose surface activity of 50-fold and 100-fold diluted cell-free Landy medium was as 5.6-fold and 17.4-fold as the wild strain. The microbial growth and biosurfactant production of both the mutant and the wild strain were compared. After purified by ultrafiltration and SOURCE 15PHE, the biosurfactant was determined to be a complex of surfactin family through analysis of electrospray ionization mass spectrum (ESI/MS) and there was an interesting finding that after the ion beam implantation the intensities of the components were different from the wild type strain.展开更多
Low-energy ion beam implantation (10 - 200 keV) has been proved to have a wide range of biological effects and is broadly used in the breeding of crops and micro-organisms.To understand its mechanisms better and fac...Low-energy ion beam implantation (10 - 200 keV) has been proved to have a wide range of biological effects and is broadly used in the breeding of crops and micro-organisms.To understand its mechanisms better and facilitate its applications, the developments in the bioeffects of low energy ion beam implantation in the past twenty years are summarized in this paper.展开更多
Ion beam bioengineering technology as a new mutation approach has been widely used in the biological breeding field. In this paper the application of low energy nitrogen ion implantation in the β-carotene producing s...Ion beam bioengineering technology as a new mutation approach has been widely used in the biological breeding field. In this paper the application of low energy nitrogen ion implantation in the β-carotene producing strain, Blakeslea trispora(-) was investigated. The effects of different fermentation conditions on β-carotene production by a high yield strain were examined. Results showed that two β-carotene high yielding strains B.trispora(-) BH3-701 and BH3-728 were screened out and the averaged production of β-carotene was raised by 178.7% and 164.6% respectively after five passages in the shaking flasks. Compared with the original strain, the highest yield strain BH3-701 was potent in accumulating β-carotene, especially in the later stage, and greatly increased production efficiency.展开更多
[Objective] This study was to investigate the effect of N+ ion beam implantation on the survival rate and mutation rate of biocontrol strain Bacillus subtilis. [Method] The factors influencing B. subtilis ion beam im...[Objective] This study was to investigate the effect of N+ ion beam implantation on the survival rate and mutation rate of biocontrol strain Bacillus subtilis. [Method] The factors influencing B. subtilis ion beam implantation, including culture time, dilution concentration, solvent, drying time of mycoderm were optimized. B. subtilis cells were implanted by using ion beam at dose of 2.0×10^14~4.0×10^14 ions/cm2 and the energy of 30 kev. Then the methods of culturing colonies confronting each other on plate and Oxford cup diffusion were used to screening strains. [Result] The optimal parameters were found as follows: culture in liquid for 20-24 h, dilution with sterile water to 106 cells/ml and drying time of 60 min for sample preparation; the optimal N+ ion beam implantation dose of 2.0×10^14~4.0×10^14 ions/cm2 at the energy of 30 kev, the survival rate of 8.43%-26.71% and the mutation rate of 3.50%-5.43%. [Conclusion] This study provided reference for ion beam implantation mutation of B. subtilis.展开更多
Mutation induced by low energy ion beam implantation has been applied widely both in plants and microbes. However, due to the vacuum limitation, such ion implantation into animals was never studied except for silkworm...Mutation induced by low energy ion beam implantation has been applied widely both in plants and microbes. However, due to the vacuum limitation, such ion implantation into animals was never studied except for silkworm. In this study, Pupae of fruit fly were irradiated with different dosage N+ ions at energy 20 KeV to study the biological effect of ion beam on animal. The results showed a saddle like curve exists between incubate rate and dosage. Damage of pupae by ion beam implantation was observed using scanning electron microscope. Some individuals with incomplete wing were obtained after implantation but no similar character was observed in their offspring. Furthermore, about 5.47% mutants with wide variation appeared in M1 generation. Therefore, ion beam implantation could be widely used for mutation breeding.展开更多
Gongronella sp. JG was a fungal strain which expressed extracellular chitosanase of about 800 U/L during its growth in production medium. To improve its enzyme production, low energy N+ implantation was employed to m...Gongronella sp. JG was a fungal strain which expressed extracellular chitosanase of about 800 U/L during its growth in production medium. To improve its enzyme production, low energy N+ implantation was employed to mutate spores of JG. The implantation condition was optimized and the parameters of 15 keV and 60 × breeding experiments. A mutant designated as SG 2.6 × 10^13 ions/cm^2 were selected for further was obtained. It showed increased chitosanase production (1800 U/L) and shortened cultivation period (from 72 h to 60 h). Five-generation cultivation of SG indicated that its chitosanase production was stable at about 1800 U/L.展开更多
Mutant strains of GO112 and BM302 with a high 2-keto-L-gulonic acid (2KLG) transformation rate induced by ion beam implantation were separately and combinatorially compared with the original strains GO29 and BM80 to...Mutant strains of GO112 and BM302 with a high 2-keto-L-gulonic acid (2KLG) transformation rate induced by ion beam implantation were separately and combinatorially compared with the original strains GO29 and BM80 to study the mutagenic effects of ion beam implantation. Both the sole GOl12 and mixed BM302:GOl12 demonstrated improved SNDH activity and 2KLG yield compared to the original strains. The mutant combinations of BM302:GOl12 showed a longer stationary phase and higher biomass than BM80:GO29. The mutant BM302 exhibited a stronger capacity to maintain a stable pH environment at mixed fermentation with Gluconobacter oxydans (G. oxydans) for 2KLG transformation and facilitated the growth of G. oxydans compared with the original strain BM80. The promotive capacity to L-sorbosone dehydrogenase (L-SNDH) from the supernate of BM302 was 1.6-fold higher than that of BM80. Genes encoded SNDH in GO29 and GOl12 were amplified and sequenced, and mutations including three transitions (CG →TA, CG →TA, GC → AT) and one transversion (AT→ TA) were confirmed from GO29 to GOl12. The corresponding amino acid was changed as Leu →Phe, Arg → Gln and Asn → Lys.展开更多
[Objective] This study aimed to explore the mutagenesis effects of N+ ion beam implantation on Streptomyces a/bus and obtain high-yield salinomycin- producing mutant strain. [ Method ] Streptomyces a/bus strain S-11-...[Objective] This study aimed to explore the mutagenesis effects of N+ ion beam implantation on Streptomyces a/bus and obtain high-yield salinomycin- producing mutant strain. [ Method ] Streptomyces a/bus strain S-11-04 was mutated with different doses of N + implantation. The effects of low energy N * implantation on the survival rate, colony morphology and salinomycin-producing ability were investigated. [ Result] The results showed that low energy N + implantation can efficiently improve the positive mutation rate of Streptomyces albus; 13 mutant strains with high yield of salinomycin were isolated; to be specific, mutant strain N3- 6 has relatively good genetic stability with four continuous generations, and the titres of salinomycin were increased by 41% in the shake-flask culture and 20.5% in mass production compared with the control. [ Conclusion ] N + ion beam irradiation is an effective method to obtain high-yield salinomycin-producing Streptomy- ces albus strain.展开更多
In an attempt to elucidate the biological effects and underlying mutations involving flower color in ornamental plants following carbon ion beam radiation,shoots of geranium were exposed at dosages of 0,10,15,30,and40...In an attempt to elucidate the biological effects and underlying mutations involving flower color in ornamental plants following carbon ion beam radiation,shoots of geranium were exposed at dosages of 0,10,15,30,and40 Gy,and one flower color mutant was obtained.The morphological characteristics,physiological aspects,and DNA polymorphisms between wild-type and flower color mutants were analyzed.The colors of petal,peduncle,pistil,and stamen of the mutant displayed significant differences compared to those of the wild-type.Compared to the original plants,the total anthocyanin content in the petals of the mutant significantly decreased,resulting in a light pink petal phenotype.DNA polymorphisms detected by random amplified polymorphic DNA analysis showed that the ratio of different bands between the wild-type and mutant reached up to 13.2%.The present study demonstrates that carbon ion beam irradiation is effective in inducing genomic variations,resulting in flower color geranium mutants within a relatively short period of time.Meanwhile,the developed flower-color mutants may be potentially used in future mutational research studies involving ornamental plants.展开更多
A bioflocculant-producing mutator strain, NIM-192, was screened out through nitrogen ion implanting into F J-7 strain. The results showed that NIM-192 had good genetic stability and high flocculating activity, and the...A bioflocculant-producing mutator strain, NIM-192, was screened out through nitrogen ion implanting into F J-7 strain. The results showed that NIM-192 had good genetic stability and high flocculating activity, and the flocculating rate increased by 34.26% than that of the original. Sucrose, complex nitrogen source contained yeast extract, urea and pH 7.0~ 9.0 were chosen as the best carbon source, nitrogen source and initial solution pH for bioflocculant production, respectively. The bioflocculant kept high and stable flocculating activity at alkalinous reaction mixture with a pH beyond 7.0, while the flocculating activity was remarkably reduced when the reaction pH was lower than 7.0. Addition of many cations could obviously increase the flocculating rate, among which Ca^2+ demonstrated the best effect. The bioflocculant had very strong acid-base stability and thermo-stability.The flocculating rate kept over 86% when pH of the bioflocculant was in a range of 3.0 ~ 12.0, and the change of flocculating activity was not great when heated at 100℃ for 60 rain.展开更多
基金supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (No.KSCX2-SW-324)
文摘In order to generate a mutant of Bacillus subtilis with enhanced surface activity through low energy nitrogen ion beam implantation, the effects of energy and dose of ions implanted were studied. The morphological changes in the bacteria were observed by scanning electron microscope (SEM). The optimum condition of ions implantation, 20 keV of energy and 2.6 × 10^15N^+/cm^2 in dose, was determined. A mutant, B.s-E-8 was obtained, whose surface activity of 50-fold and 100-fold diluted cell-free Landy medium was as 5.6-fold and 17.4-fold as the wild strain. The microbial growth and biosurfactant production of both the mutant and the wild strain were compared. After purified by ultrafiltration and SOURCE 15PHE, the biosurfactant was determined to be a complex of surfactin family through analysis of electrospray ionization mass spectrum (ESI/MS) and there was an interesting finding that after the ion beam implantation the intensities of the components were different from the wild type strain.
文摘Low-energy ion beam implantation (10 - 200 keV) has been proved to have a wide range of biological effects and is broadly used in the breeding of crops and micro-organisms.To understand its mechanisms better and facilitate its applications, the developments in the bioeffects of low energy ion beam implantation in the past twenty years are summarized in this paper.
文摘Ion beam bioengineering technology as a new mutation approach has been widely used in the biological breeding field. In this paper the application of low energy nitrogen ion implantation in the β-carotene producing strain, Blakeslea trispora(-) was investigated. The effects of different fermentation conditions on β-carotene production by a high yield strain were examined. Results showed that two β-carotene high yielding strains B.trispora(-) BH3-701 and BH3-728 were screened out and the averaged production of β-carotene was raised by 178.7% and 164.6% respectively after five passages in the shaking flasks. Compared with the original strain, the highest yield strain BH3-701 was potent in accumulating β-carotene, especially in the later stage, and greatly increased production efficiency.
基金Supported by the"Bud Plan"Project of Beijing Academy of Science and Technology(No.022)~~
文摘[Objective] This study was to investigate the effect of N+ ion beam implantation on the survival rate and mutation rate of biocontrol strain Bacillus subtilis. [Method] The factors influencing B. subtilis ion beam implantation, including culture time, dilution concentration, solvent, drying time of mycoderm were optimized. B. subtilis cells were implanted by using ion beam at dose of 2.0×10^14~4.0×10^14 ions/cm2 and the energy of 30 kev. Then the methods of culturing colonies confronting each other on plate and Oxford cup diffusion were used to screening strains. [Result] The optimal parameters were found as follows: culture in liquid for 20-24 h, dilution with sterile water to 106 cells/ml and drying time of 60 min for sample preparation; the optimal N+ ion beam implantation dose of 2.0×10^14~4.0×10^14 ions/cm2 at the energy of 30 kev, the survival rate of 8.43%-26.71% and the mutation rate of 3.50%-5.43%. [Conclusion] This study provided reference for ion beam implantation mutation of B. subtilis.
文摘Mutation induced by low energy ion beam implantation has been applied widely both in plants and microbes. However, due to the vacuum limitation, such ion implantation into animals was never studied except for silkworm. In this study, Pupae of fruit fly were irradiated with different dosage N+ ions at energy 20 KeV to study the biological effect of ion beam on animal. The results showed a saddle like curve exists between incubate rate and dosage. Damage of pupae by ion beam implantation was observed using scanning electron microscope. Some individuals with incomplete wing were obtained after implantation but no similar character was observed in their offspring. Furthermore, about 5.47% mutants with wide variation appeared in M1 generation. Therefore, ion beam implantation could be widely used for mutation breeding.
基金the National Natural Science Foundation of China(No.10605027).
文摘Gongronella sp. JG was a fungal strain which expressed extracellular chitosanase of about 800 U/L during its growth in production medium. To improve its enzyme production, low energy N+ implantation was employed to mutate spores of JG. The implantation condition was optimized and the parameters of 15 keV and 60 × breeding experiments. A mutant designated as SG 2.6 × 10^13 ions/cm^2 were selected for further was obtained. It showed increased chitosanase production (1800 U/L) and shortened cultivation period (from 72 h to 60 h). Five-generation cultivation of SG indicated that its chitosanase production was stable at about 1800 U/L.
文摘Mutant strains of GO112 and BM302 with a high 2-keto-L-gulonic acid (2KLG) transformation rate induced by ion beam implantation were separately and combinatorially compared with the original strains GO29 and BM80 to study the mutagenic effects of ion beam implantation. Both the sole GOl12 and mixed BM302:GOl12 demonstrated improved SNDH activity and 2KLG yield compared to the original strains. The mutant combinations of BM302:GOl12 showed a longer stationary phase and higher biomass than BM80:GO29. The mutant BM302 exhibited a stronger capacity to maintain a stable pH environment at mixed fermentation with Gluconobacter oxydans (G. oxydans) for 2KLG transformation and facilitated the growth of G. oxydans compared with the original strain BM80. The promotive capacity to L-sorbosone dehydrogenase (L-SNDH) from the supernate of BM302 was 1.6-fold higher than that of BM80. Genes encoded SNDH in GO29 and GOl12 were amplified and sequenced, and mutations including three transitions (CG →TA, CG →TA, GC → AT) and one transversion (AT→ TA) were confirmed from GO29 to GOl12. The corresponding amino acid was changed as Leu →Phe, Arg → Gln and Asn → Lys.
文摘[Objective] This study aimed to explore the mutagenesis effects of N+ ion beam implantation on Streptomyces a/bus and obtain high-yield salinomycin- producing mutant strain. [ Method ] Streptomyces a/bus strain S-11-04 was mutated with different doses of N + implantation. The effects of low energy N * implantation on the survival rate, colony morphology and salinomycin-producing ability were investigated. [ Result] The results showed that low energy N + implantation can efficiently improve the positive mutation rate of Streptomyces albus; 13 mutant strains with high yield of salinomycin were isolated; to be specific, mutant strain N3- 6 has relatively good genetic stability with four continuous generations, and the titres of salinomycin were increased by 41% in the shake-flask culture and 20.5% in mass production compared with the control. [ Conclusion ] N + ion beam irradiation is an effective method to obtain high-yield salinomycin-producing Streptomy- ces albus strain.
基金supported by the National Natural Science Foundation of China(Grant Nos.11205218,11275171,and 11405234)the Knowledge Innovation Project of the Chinese Academy of Sciences(CAS)(No.KJCX2-EW-N05)+1 种基金CAS‘‘Light of West China’’Program(No.29Y506020)the Youth Innovation Promotion Association of CAS(No.29Y506030)supported this study
文摘In an attempt to elucidate the biological effects and underlying mutations involving flower color in ornamental plants following carbon ion beam radiation,shoots of geranium were exposed at dosages of 0,10,15,30,and40 Gy,and one flower color mutant was obtained.The morphological characteristics,physiological aspects,and DNA polymorphisms between wild-type and flower color mutants were analyzed.The colors of petal,peduncle,pistil,and stamen of the mutant displayed significant differences compared to those of the wild-type.Compared to the original plants,the total anthocyanin content in the petals of the mutant significantly decreased,resulting in a light pink petal phenotype.DNA polymorphisms detected by random amplified polymorphic DNA analysis showed that the ratio of different bands between the wild-type and mutant reached up to 13.2%.The present study demonstrates that carbon ion beam irradiation is effective in inducing genomic variations,resulting in flower color geranium mutants within a relatively short period of time.Meanwhile,the developed flower-color mutants may be potentially used in future mutational research studies involving ornamental plants.
基金the State Key Development Program for Basic Research of China(No.2004CB719604)
文摘A bioflocculant-producing mutator strain, NIM-192, was screened out through nitrogen ion implanting into F J-7 strain. The results showed that NIM-192 had good genetic stability and high flocculating activity, and the flocculating rate increased by 34.26% than that of the original. Sucrose, complex nitrogen source contained yeast extract, urea and pH 7.0~ 9.0 were chosen as the best carbon source, nitrogen source and initial solution pH for bioflocculant production, respectively. The bioflocculant kept high and stable flocculating activity at alkalinous reaction mixture with a pH beyond 7.0, while the flocculating activity was remarkably reduced when the reaction pH was lower than 7.0. Addition of many cations could obviously increase the flocculating rate, among which Ca^2+ demonstrated the best effect. The bioflocculant had very strong acid-base stability and thermo-stability.The flocculating rate kept over 86% when pH of the bioflocculant was in a range of 3.0 ~ 12.0, and the change of flocculating activity was not great when heated at 100℃ for 60 rain.