An alcohol dehydrogenase (ADH)-coexisted solidstate electrochemiluminescence (ECL) biosensor for sensitive detection of the p53 gene was developed. The electrode modified by multiwalled carbon nanotubes, Ru(bpy...An alcohol dehydrogenase (ADH)-coexisted solidstate electrochemiluminescence (ECL) biosensor for sensitive detection of the p53 gene was developed. The electrode modified by multiwalled carbon nanotubes, Ru(bpy)]2+3 and polypyrrole ( MWNTs-Ru (bpy) ]2+3 -PPy ) was prepared to adsorb the ssDNA by electrostatic interactions. Then, the ssDNA recognized the gold nanoparticles (AuNPs)-labeled p53 gene and produced the AuNPs-dsDNA electrode with the AuNPs layer. The AuNPs layer adsorbed the ADH molecules for producing the ECL signal. Thus, the biosensor was based on coupling enzyme substrate reaction with solid-state ECL detection, and it displayed good sensitivity and specificity. The detection limit of the wild type p53 sequence (wtp53) is as low as 0. 1 pmol/L and the discrimination is up to 57. 1% between the wtp53 and the muted type p53 sequence (mtp53). The amenability of this method to the analyses of p53 from normal and cancer cell lysates is demonstrated. The signal of wtp53 in the MGC-803 gastric cancer cell lysates turns out to be about 61.8% that of the wtp53 in the GES-1 normal gastric mucosal cell lysates, and the concentration of the wtp53 is found to decrease about 59 times. The method is highly complementary to enzyme-linked immunosorbent assay (ELISA), and it holds promise for the diagnosis and management of cancer.展开更多
基金The National Basic Research Program of China(973 Program)(No.2010CB732404,2011CB933404)the National Natural Science Foundation of China(No.81172697,81170492,81001244)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092120055)the Foundation of the State Key Laboratory of Bioelectronics of Southeast University
文摘An alcohol dehydrogenase (ADH)-coexisted solidstate electrochemiluminescence (ECL) biosensor for sensitive detection of the p53 gene was developed. The electrode modified by multiwalled carbon nanotubes, Ru(bpy)]2+3 and polypyrrole ( MWNTs-Ru (bpy) ]2+3 -PPy ) was prepared to adsorb the ssDNA by electrostatic interactions. Then, the ssDNA recognized the gold nanoparticles (AuNPs)-labeled p53 gene and produced the AuNPs-dsDNA electrode with the AuNPs layer. The AuNPs layer adsorbed the ADH molecules for producing the ECL signal. Thus, the biosensor was based on coupling enzyme substrate reaction with solid-state ECL detection, and it displayed good sensitivity and specificity. The detection limit of the wild type p53 sequence (wtp53) is as low as 0. 1 pmol/L and the discrimination is up to 57. 1% between the wtp53 and the muted type p53 sequence (mtp53). The amenability of this method to the analyses of p53 from normal and cancer cell lysates is demonstrated. The signal of wtp53 in the MGC-803 gastric cancer cell lysates turns out to be about 61.8% that of the wtp53 in the GES-1 normal gastric mucosal cell lysates, and the concentration of the wtp53 is found to decrease about 59 times. The method is highly complementary to enzyme-linked immunosorbent assay (ELISA), and it holds promise for the diagnosis and management of cancer.