The continuous change of communica-tion frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication net-works.Since the frequency-hopping(FH)sequence is usually generated by a c...The continuous change of communica-tion frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication net-works.Since the frequency-hopping(FH)sequence is usually generated by a certain model with certain regularity,the FH frequency is thus predictable.In this paper,we investigate the FH frequency reconnais-sance and prediction of a non-cooperative communi-cation network by effective FH signal detection,time-frequency(TF)analysis,wavelet detection and fre-quency estimation.With the intercepted massive FH signal data,long short-term memory(LSTM)neural network model is constructed for FH frequency pre-diction.Simulation results show that our parameter es-timation methods could estimate frequency accurately in the presence of certain noise.Moreover,the LSTM-based scheme can effectively predict FH frequency and frequency interval.展开更多
文摘The continuous change of communica-tion frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication net-works.Since the frequency-hopping(FH)sequence is usually generated by a certain model with certain regularity,the FH frequency is thus predictable.In this paper,we investigate the FH frequency reconnais-sance and prediction of a non-cooperative communi-cation network by effective FH signal detection,time-frequency(TF)analysis,wavelet detection and fre-quency estimation.With the intercepted massive FH signal data,long short-term memory(LSTM)neural network model is constructed for FH frequency pre-diction.Simulation results show that our parameter es-timation methods could estimate frequency accurately in the presence of certain noise.Moreover,the LSTM-based scheme can effectively predict FH frequency and frequency interval.