In the relentless quest for digital sovereignty, organizations face an unprecedented challenge in safeguarding sensitive information, protecting against cyber threats, and maintaining regulatory compliance. This manus...In the relentless quest for digital sovereignty, organizations face an unprecedented challenge in safeguarding sensitive information, protecting against cyber threats, and maintaining regulatory compliance. This manuscript unveils a revolutionary blueprint for cyber resilience, empowering organizations to transcend the limitations of traditional cybersecurity paradigms and forge ahead into uncharted territories of data security excellence and frictionless secrets management experience. Enter a new era of cybersecurity innovation and continued excellence. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the secrets lifecycle management with other platform cohesive integrations. Enterprises can enhance security, streamline operations, fasten development practices, avoid secrets sprawl, and improve overall compliance and DevSecOps practice. This enables the enterprises to enhance security, streamline operations, fasten development & deployment practices, avoid secrets spawls, and improve overall volume in shipping software with paved-road DevSecOps Practices, and improve developers’ productivity. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the application secrets lifecycle with other platform cohesive integrations. Organizations can enhance security, streamline operations, fasten development & deployment practices, avoid secrets sprawl, and improve overall volume in shipping software with paved-road DevSecOps practices. Most importantly, increases developer productivity.展开更多
Dynamic latency over the Intemet is an Important parameter for evaluating the performance of Web service orchestration. In this paper, we propose a performance analyzing and correctness checking method for service orc...Dynamic latency over the Intemet is an Important parameter for evaluating the performance of Web service orchestration. In this paper, we propose a performance analyzing and correctness checking method for service orchestration with dynamic latency simulated in Colored PetriNets (CPNs). First, we extend the CPN to Web Service Composition Orchestration Network System (WS-CONS) for the description of dynamic latency in service orchestration. Secondly, with simulated dynamic latency, a buffer-limited policy and admittance-control policy are designed in WS- CONS and implemented on CPN Tools. In the buffer-limited policy, the passing messages would be discarded if the node capacity is not adequate. In the admittance-control policy, the ability of a message entering the system depends on the number of messages concurrently flowing in the system. This helps to enhance the success rate of message passing. Finally, the system performance is evaluated through running models in CPN Tools. Simulated results show that the dynamic latency plays an important role in the system throughput and response latency. This simulation helps system designers to quickly make proper compromises at low cost.展开更多
随着虚拟化技术的出现,网络功能虚拟化(Network Function Virtualization,NFV)和软件定义网络(Software Defined Networking,SDN)技术使网络功能从硬件中抽象出来并可运行在虚拟机上,将虚拟网络功能映射部署到物理网络上,为用户提供定...随着虚拟化技术的出现,网络功能虚拟化(Network Function Virtualization,NFV)和软件定义网络(Software Defined Networking,SDN)技术使网络功能从硬件中抽象出来并可运行在虚拟机上,将虚拟网络功能映射部署到物理网络上,为用户提供定制化服务。服务功能链(Service Function Chaining,SFC)由一组虚拟网络功能组成,目前其部署的一个关键问题是如何在保证为用户提供相应服务的同时降低网络资源消耗和负载压力。为此,首先介绍了一种可用于服务功能链编排的NFV架构,并对基于SRv6技术的SFC编排过程进行说明;然后提出了一种有效的SFC动态编排算法——第一步使用广度优先搜索遍历网络并找到部署服务链的最短物理路径,第二步使用蚁群优化算法生成最优部署方案。仿真结果表明,该方案能够有效减轻网络负载,同时平均降低端到端延迟22%,减少带宽资源消耗18%,优化部署成功率23%。展开更多
文摘In the relentless quest for digital sovereignty, organizations face an unprecedented challenge in safeguarding sensitive information, protecting against cyber threats, and maintaining regulatory compliance. This manuscript unveils a revolutionary blueprint for cyber resilience, empowering organizations to transcend the limitations of traditional cybersecurity paradigms and forge ahead into uncharted territories of data security excellence and frictionless secrets management experience. Enter a new era of cybersecurity innovation and continued excellence. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the secrets lifecycle management with other platform cohesive integrations. Enterprises can enhance security, streamline operations, fasten development practices, avoid secrets sprawl, and improve overall compliance and DevSecOps practice. This enables the enterprises to enhance security, streamline operations, fasten development & deployment practices, avoid secrets spawls, and improve overall volume in shipping software with paved-road DevSecOps Practices, and improve developers’ productivity. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the application secrets lifecycle with other platform cohesive integrations. Organizations can enhance security, streamline operations, fasten development & deployment practices, avoid secrets sprawl, and improve overall volume in shipping software with paved-road DevSecOps practices. Most importantly, increases developer productivity.
基金This paper was supported by the National Natural Science Foundation of China under Grants No.61170053,No.61101214,No.61100205,the National High-Tech Research and Development Plan of China under Grant No.2012AA010902-1,the Natural Science Foundation of Beijing under Grant No.4112027,Special Project of National CAS Union-The High Performace Cloud Service Platform for Enterprise Creative Computing
文摘Dynamic latency over the Intemet is an Important parameter for evaluating the performance of Web service orchestration. In this paper, we propose a performance analyzing and correctness checking method for service orchestration with dynamic latency simulated in Colored PetriNets (CPNs). First, we extend the CPN to Web Service Composition Orchestration Network System (WS-CONS) for the description of dynamic latency in service orchestration. Secondly, with simulated dynamic latency, a buffer-limited policy and admittance-control policy are designed in WS- CONS and implemented on CPN Tools. In the buffer-limited policy, the passing messages would be discarded if the node capacity is not adequate. In the admittance-control policy, the ability of a message entering the system depends on the number of messages concurrently flowing in the system. This helps to enhance the success rate of message passing. Finally, the system performance is evaluated through running models in CPN Tools. Simulated results show that the dynamic latency plays an important role in the system throughput and response latency. This simulation helps system designers to quickly make proper compromises at low cost.
文摘随着虚拟化技术的出现,网络功能虚拟化(Network Function Virtualization,NFV)和软件定义网络(Software Defined Networking,SDN)技术使网络功能从硬件中抽象出来并可运行在虚拟机上,将虚拟网络功能映射部署到物理网络上,为用户提供定制化服务。服务功能链(Service Function Chaining,SFC)由一组虚拟网络功能组成,目前其部署的一个关键问题是如何在保证为用户提供相应服务的同时降低网络资源消耗和负载压力。为此,首先介绍了一种可用于服务功能链编排的NFV架构,并对基于SRv6技术的SFC编排过程进行说明;然后提出了一种有效的SFC动态编排算法——第一步使用广度优先搜索遍历网络并找到部署服务链的最短物理路径,第二步使用蚁群优化算法生成最优部署方案。仿真结果表明,该方案能够有效减轻网络负载,同时平均降低端到端延迟22%,减少带宽资源消耗18%,优化部署成功率23%。