Radar radio frequency (RF) stealth is very important in electronic war (EW), and waveform design and selection. Existing evaluation rules of radar RF stealth include too many parameters of radar and interceptors, ...Radar radio frequency (RF) stealth is very important in electronic war (EW), and waveform design and selection. Existing evaluation rules of radar RF stealth include too many parameters of radar and interceptors, such as Schleher interception factor, which makes it difficult to evaluate radar RF stealth technologies if interceptor parameters are unknown. In communication, security capacity has been presented to describe the possible ability to communicate in complete security. Since the essential of the secu- rity capacity is to have the interceptor get none valued information from the emitter, this paper is proposed to study security infor- mation factors taking advantage of mutual information to evaluate radar RF stealth under some conditions. Through analyzing mutual information obtained by the radar and the interceptor, this paper defines the security information factor with and without cooperative jamming. Furthermore, this paper deduces the ratio of the match filter to the match incoherent filter and discuss mutual information received by the interceptor. Numerical simulations illustrate radar RF stealth effects based on the security information factor concept under different conditions.展开更多
Adjusting radar transmitted waveform to its environment is one of the most important roles in cognitive radar;having the capability of updating transmitted waveforms in different applications is a key point. It has be...Adjusting radar transmitted waveform to its environment is one of the most important roles in cognitive radar;having the capability of updating transmitted waveforms in different applications is a key point. It has been shown in many studies that if the waveform is designed according to the target and clutter characteristics, the detection performance will improve significantly. The uncertainty of the target radar signatures decreases via maximizing MI and the probability of extended target detection is increases via maximizing SNR. In this paper, a waveform design approach based on maximizing both SNR and MI and with regard to target and clutter shape is presented. The detection performance for proposed waveform is compared with previous proposed waveforms. The present paper compares different scenarios of target and clutter and using the probability of detection as a cost function to investigate the advantages and disadvantages of each waveform in different scenarios which are mainly discussed in this text. The desired waveform for cognitive radar is selected based on simultaneously making compromises between SNR and MI, which plays an important role in cognitive radar systems and based on the assumption addressed in the text, the best waveform transmitted into the environment.展开更多
在发射信号能量有限情况下,雷达性能界定了信杂噪比(signal to interference plus noise ratio,SINR)的作用范围,而雷达波形设计就受到SINR的约束。对此,以提升认知雷达目标估计性能为目标,根据相对熵的非负性条件,从理论上推导了互信...在发射信号能量有限情况下,雷达性能界定了信杂噪比(signal to interference plus noise ratio,SINR)的作用范围,而雷达波形设计就受到SINR的约束。对此,以提升认知雷达目标估计性能为目标,根据相对熵的非负性条件,从理论上推导了互信息的边界和SINR的作用阈,并在信号相关杂波环境下,提出一种SINR约束下基于最大化互信息的波形设计方法。仿真验证了互信息和SINR之间的单调递增、阈值限定和相互约束关系,结果表明SINR约束下的优化波形能更充分利用发射能量,在有目标且杂波弱的频率点提取目标信号。展开更多
为提高雷达通信一体化功率资源的利用率,提出一种OFDM(Orthogonal Frequency Division Multiplexing正交频分复用)一体化信号功率控制方法。根据OFDM分集特性,建立雷达互信息及通信容量与子载波功率间的多目标函数。通过改进初始种群生...为提高雷达通信一体化功率资源的利用率,提出一种OFDM(Orthogonal Frequency Division Multiplexing正交频分复用)一体化信号功率控制方法。根据OFDM分集特性,建立雷达互信息及通信容量与子载波功率间的多目标函数。通过改进初始种群生成及自适应选择交叉算子提高NSGA-II(Non-Dominated Sorting Genetic Algorithm)第二代非支配排序遗传算法的收敛速度。基于改进算法求解多目标函数的非支配解集,确定下一时刻各子载波功率分配策略。仿真证明,在有限的功率资源下自适应分配子载波功率能够提升一体化系统性能。展开更多
基金supported by the National Natural Science Foundation of China(61371170)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Radar radio frequency (RF) stealth is very important in electronic war (EW), and waveform design and selection. Existing evaluation rules of radar RF stealth include too many parameters of radar and interceptors, such as Schleher interception factor, which makes it difficult to evaluate radar RF stealth technologies if interceptor parameters are unknown. In communication, security capacity has been presented to describe the possible ability to communicate in complete security. Since the essential of the secu- rity capacity is to have the interceptor get none valued information from the emitter, this paper is proposed to study security infor- mation factors taking advantage of mutual information to evaluate radar RF stealth under some conditions. Through analyzing mutual information obtained by the radar and the interceptor, this paper defines the security information factor with and without cooperative jamming. Furthermore, this paper deduces the ratio of the match filter to the match incoherent filter and discuss mutual information received by the interceptor. Numerical simulations illustrate radar RF stealth effects based on the security information factor concept under different conditions.
文摘Adjusting radar transmitted waveform to its environment is one of the most important roles in cognitive radar;having the capability of updating transmitted waveforms in different applications is a key point. It has been shown in many studies that if the waveform is designed according to the target and clutter characteristics, the detection performance will improve significantly. The uncertainty of the target radar signatures decreases via maximizing MI and the probability of extended target detection is increases via maximizing SNR. In this paper, a waveform design approach based on maximizing both SNR and MI and with regard to target and clutter shape is presented. The detection performance for proposed waveform is compared with previous proposed waveforms. The present paper compares different scenarios of target and clutter and using the probability of detection as a cost function to investigate the advantages and disadvantages of each waveform in different scenarios which are mainly discussed in this text. The desired waveform for cognitive radar is selected based on simultaneously making compromises between SNR and MI, which plays an important role in cognitive radar systems and based on the assumption addressed in the text, the best waveform transmitted into the environment.
文摘在发射信号能量有限情况下,雷达性能界定了信杂噪比(signal to interference plus noise ratio,SINR)的作用范围,而雷达波形设计就受到SINR的约束。对此,以提升认知雷达目标估计性能为目标,根据相对熵的非负性条件,从理论上推导了互信息的边界和SINR的作用阈,并在信号相关杂波环境下,提出一种SINR约束下基于最大化互信息的波形设计方法。仿真验证了互信息和SINR之间的单调递增、阈值限定和相互约束关系,结果表明SINR约束下的优化波形能更充分利用发射能量,在有目标且杂波弱的频率点提取目标信号。