期刊文献+
共找到163篇文章
< 1 2 9 >
每页显示 20 50 100
Causal Analysis Between Rice Growth and Cadmium Accumulation and Transfer under Arbuscular Mycorrhizal Inoculation
1
作者 ZHAO Ting WANG Li +1 位作者 YANG Jixian MA Fang 《Rice science》 SCIE CSCD 2024年第2期226-236,共11页
Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The r... Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF. 展开更多
关键词 cadmium transfer dilution effect heavy metal immobilization mycorrhizal effect path analysis phenotypic plasticity
下载PDF
Soil Physico-Chemical Properties and Different Altitudes Affect Arbuscular Mycorrhizal Fungi Abundance and Colonization in Cacao Plantations of Cameroon
2
作者 Franklin Tounkam Ketchiemo Beaulys Fotso +4 位作者 Astride Stéphanie Mouafi Djabou Victor Jos Eyamo Evina Japhet Youri Essambita Franck Maxime Ewane Tang Nicolas Niemenak 《American Journal of Plant Sciences》 CAS 2024年第2期57-82,共26页
This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-... This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere. 展开更多
关键词 Agroecological Zone Altitude Variations Arbuscular mycorrhizal Fungi Soil Properties Theobroma cacao
下载PDF
Morphological Characterization of Arbuscular Mycorrhizal Fungi Associated with the Rhizosphere According to the Age of Xanthosoma sagittifolium L. Schott Plants in the Field
3
作者 Audrey Maguy Bengono Nyimiebolo Astride Carole Djeuani +10 位作者 Hermann Désiré Mbouobda Antoine Marie Kevin Tiki Theresa Akinimbom Moma Diobe Motassy Manuela Samuel Brice Adounga Christophe Fendju Pangueko Jones Nshanji Issofa Nguetrapouna Rose Theophine Derricka Djem Moutamal A. Ziem Amang Amang Nicolas Niemenak 《American Journal of Plant Sciences》 CAS 2024年第3期161-179,共19页
The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and r... The objective of this work was to carry out a morphological characterization of arbuscular mycorrhizal fungi in the rhizosphere of Xanthosoma sagittifolium L. Schott plants. The plant material used was the white and red cultivars of X. sagittifolium, belonging to age intervals of 3 - 6, 6 - 9, and 9 - 12 months. Three harvest sites were chosen in the Central Region of Cameroon. In each site, soil from the rhizosphere and plant roots was collected in a randomized manner. In the field, the agronomic parameters were evaluated. The physicochemical characteristics of the soils, the mycorrhization index, and the morphological characterization of the mycorrhizal types of each site were carried out. The results obtained show that the agronomic growth parameters varied significantly using the Student Newman and Keuls Test depending on the harvest sites. The soils’ pH in all sites was acidic and ranged between 4.6 and 5.8. The Nkometou site has a loamy texture while the Olembe and Soa sites have loam-clay-sandy and loam-clay textures respectively. The highest mycorrhization frequencies appeared at the Nkometou site, with 75 and 87.33% of the white and red cultivars plant roots at 6 - 9 and 3 - 6 months. The relative abundance of AMF arbuscular mycorrhizal fungal spores in the rhizosphere of X. sagittifolium plants varied with age and cultivar. There were 673 spores between 9 - 12 months in Nkometou in the red cultivar. Six AMF genera were identified in all the different soils collected: Acaulospora sp., Funneliformis sp., Gigaspora sp., Glomus sp., Scutellospora sp., and Septoglomus sp. The genus Glomus sp. was the most present at all age intervals in both cultivars. 展开更多
关键词 Xanthosoma sagittifolium L. Schott RHIZOSPHERE Harvest Site Arbuscular mycorrhizal Fungi DIVERSITY
下载PDF
Moso bamboo expansion decreased soil heterotrophic respiration but increased arbuscular mycorrhizal mycelial respiration in a subtropical broadleaved forest 被引量:1
4
作者 Wenhao Jin Jiaying Tu +7 位作者 Qifeng Wu Liyuan Peng Jiajia Xing Chenfei Liang Shuai Shao Junhui Chen Qiufang Xu Hua Qin 《Forest Ecosystems》 SCIE CSCD 2023年第3期337-347,共11页
Moso bamboo(Phyllostachys Pubescens)expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China,which will likely have significant... Moso bamboo(Phyllostachys Pubescens)expansion into adjacent forests has been widely reported to affect plant diversity and its association with mycorrhizal fungi in subtropical China,which will likely have significant impacts on soil respiration.However,there is still limited information on how Moso bamboo expansion changes soil respiration components and their linkage with microbial community composition and activity.Based on a mesh exclusion method,soil respirations derived from roots,arbuscular mycorrhizal(AM)mycelium,and free-living microbes were investigated in a pure Moso bamboo forest(expanded),an adjacent broadleaved forest(nonexpanded),and a mixed bamboo-broadleaved forest(expanding).Our results showed that bamboo expansion decreased the cumulative CO_(2)effluxes from total soil respiration,root respiration and soil heterotrophic respiration(by 19.01%,30.34%,and 29.92%on average),whereas increased those from AM mycelium(by 78.67%in comparison with the broadleaved forests).Bamboo expansion significantly decreased soil organic carbon(C)content,bacterial and fungal abundances,and enzyme activities involved in C,N and P cycling whereas enhanced the interactive relationships among bacterial communities.In contrast,the ingrowth of AM mycelium increased the activities ofβ-glucosidase and N-acetyl-β-glucosaminidase and decreased the interactive relationships among bacterial communities.Changes in soil heterotrophic respiration and AM mycelium respiration had positive correlations with soil enzyme activities and fungal abundances.In summary,our findings suggest that bamboo expansion decreased soil heterotrophic respiration by decreasing soil microbial activity but increased the contribution of AM mycelial respiration to soil C efflux,which may potentially increase soil C loss from AM mycelial pathway. 展开更多
关键词 Bamboo expansion Soil respiration Soil organic carbon Plant C allocation Arbuscular mycorrhizal fungi
下载PDF
Diversity of Arbuscular Mycorrhizal Fungi Associated with Six Rice Cultivars in Italian Agricultural Ecosystem Managed with Alternate Wetting and Drying 被引量:1
5
作者 Veronica VOLPE Franco MAGURNO +2 位作者 Paola BONFANTE Stefano GHIGNONE Erica LUMINI 《Rice science》 SCIE CSCD 2023年第4期348-358,I0028-I0030,共14页
Alternate wetting and drying(AWD)system,in which water has been reduced by approximately 35%with an increased occurrence of beneficial arbuscular mycorrhizal(AM)symbiosis and no negative impact on rice yield,was propo... Alternate wetting and drying(AWD)system,in which water has been reduced by approximately 35%with an increased occurrence of beneficial arbuscular mycorrhizal(AM)symbiosis and no negative impact on rice yield,was proposed to utilize water and nutrients more sustainable.In this study,we selected six rice cultivars(Centauro,Loto,Selenio,Vialone nano,JSendra and Puntal)grown under AWD conditions,and investigated their responsiveness to AM colonization and how they select diverse AM taxa.In order to investigate root-associated AM fungus communities,molecular cloning-Sanger sequencing on small subunit rDNA data were obtained from five out of the six rice cultivars and compared with Next Generation Sequencing(NGS)data,which were previously obtained in Vialone nano.The results showed that all the cultivars were responsive to AM colonization with the development of AM symbiotic structures,even if with differences in the colonization and arbuscule abundance in the root systems.We identified 16 virtual taxa(VT)in the soil compartment and 7 VT in the root apparatus.We emphasized that the NGS analysis gives additional value to the results thanks to a more in-depth reading of the less represented AM fungus taxa. 展开更多
关键词 alternate wetting and drying system arbuscular mycorrhizal fungi rice molecular diversity virtual taxa
下载PDF
A test of the mycorrhizal-associated nutrient economy framework in two types of tropical rainforests under nutrient enrichments
6
作者 Qingshui Yu Suhui Ma +7 位作者 Xiaofeng Ni Lai Jiang Zhang Zhou Jiangling Zhu Chengjun Ji Zhiyao Tang Xiaoli Cheng Jingyun Fang 《Forest Ecosystems》 SCIE CSCD 2023年第1期12-20,共9页
Shifts in tree species and their mycorrhizal associations driven by global change play key roles in biogeochemical cycles. In this paper, we proposed a framework of the mycorrhizal-associated nutrient economy(MANE), a... Shifts in tree species and their mycorrhizal associations driven by global change play key roles in biogeochemical cycles. In this paper, we proposed a framework of the mycorrhizal-associated nutrient economy(MANE), and tested it using nutrient addition experiments conducted in two tropical rainforests. We selected two tropical rainforests dominated by arbuscular mycorrhizal(AM) and ectomycorrhizal(ECM) trees, and established eighteen20 m×20 m plots in each rainforest. Six nitrogen(N) and phosphorus(P) addition treatments were randomly distributed in each rainforest with three replicates. We examined the differences in soil carbon(C) and nutrient cycling, plant and litter productivity between the two rainforests and their responses to 10-year inorganic N and P additions. We also quantified the P pools of plants, roots, litter, soil and microbes in the two rainforests. Overall,distinct MANE frameworks were applicable for tropical rainforests, in which soil C, N and P were cycled primarily in an inorganic form in the AM-dominated rainforest, whereas they were cycled in an organic form in the ECMdominated rainforest. Notably, the effects of mycorrhizal types on soil P cycling were stronger than those on C and N cycling. The intensified N and P deposition benefited the growth of AM-dominated rainforests instead of ECMdominated rainforests. Our findings underpin the key role of mycorrhizal types in regulating biogeochemical processes, and have important implications for predicting the ecological consequences of global changes. 展开更多
关键词 Nutrient cycling Nutrient addition mycorrhizal association Arbuscular mycorrhiza ECTOMYCORRHIZA Tropical rainforest
下载PDF
Breeding against mycorrhizal symbiosis:Modern cotton (Gossypium hirsutum L.) varieties perform more poorly than older varieties except at very high phosphorus supply levels
7
作者 WANG Xin-xin ZHANG Min +2 位作者 SHENG Jian-dong FENG Gu Thomas W.KUYPER 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期701-715,共15页
Cotton (Gossypium hirsutum L.) is an importantfiber cash crop,but its root traits related to phosphorus (P) acquisition,including mycorrhizal root traits,are poorly understood.Eight cotton varieties bred in northweste... Cotton (Gossypium hirsutum L.) is an importantfiber cash crop,but its root traits related to phosphorus (P) acquisition,including mycorrhizal root traits,are poorly understood.Eight cotton varieties bred in northwestern China that were released between 1950 and 2013 were grown in pots with or without one arbuscular mycorrhizal fungal (AMF) species(Funneliformis mosseae) at three P supply levels (0,50 and 300 mg P as KH_(2)PO_(4)kg^(-1)).Eleven root traits were measured and calculated after 7 wk of growth.The more recent accessions had smaller root diameters,acquired less P and produced less biomass,indicating an (inadvertent) varietal selection for thinner roots that provided less cortical space for AMF,which then increased the need for a high P fertilizer level.At the two lower P levels,the mycorrhizal plants acquired more P and produced more biomass than non-mycorrhizal plants (3.2 vs.0.9 mg P per plant;1.8 vs.0.9 g biomass per plant at P_(0);14.5 vs.1.7 mg P per plant;and 4.7 vs.1.6 g biomass per plant at P_(50)).At the highest P level,the mycorrhizal plants acquired more P than non-mycorrhizal plants (18.8 vs.13.4 mg per P plant),but there was no difference in biomass (6.2 vs.6.3 g per plant).At the intermediate P level,root diameter was significantly positively correlated with shoot biomass,P concentration and the P content of mycorrhizal plants.The results of our study support the importance of the outsourcing model of P acquisition in the root economics space framework.Inadvertent varietal selection in the last decades,resulting in thinner roots and a lower benefit from AMF,has led to a lower productivity of cotton varieties at moderate P supply (i.e.,when mycorrhizal,the average biomass of older varieties 5.0 g per plant vs.biomass of newer varieties 4.4 g per plant),indicating the need to rethink cotton breeding efforts in order to achieve high yields without very high P input.One feasible way to solve the problem of inadvertent varietal selection for cotton is to be aware of the trade-offs between the root do-it-yourself strategy and the outsourcing towards AMF strategy,and to consider both morphological and mycorrhizal root traits when breeding cotton varieties. 展开更多
关键词 cotton varieties plant breeding arbuscular mycorrhizal fungi root economics space OUTSOURCING phosphorus acquisition
下载PDF
Mycorrhizal Fungi Spore Abundance in Old-Growth Forest Soil
8
作者 Catherine MacKenzie Holland Jessique L. Haeft 《Open Journal of Soil Science》 2023年第12期534-546,共13页
Soil samples were collected from the base of Aplectrum hymale individuals to assess mycorrhizal spores abundance. The hypothesis that mycorrhizal spore abundance would increase with proximity to the plant was not supp... Soil samples were collected from the base of Aplectrum hymale individuals to assess mycorrhizal spores abundance. The hypothesis that mycorrhizal spore abundance would increase with proximity to the plant was not supported;however, spores increased significantly with distance from the Aplectrum hymale plants up to one meter. 展开更多
关键词 mycorrhizal Fungi GLOMUS Spore Abundance Aplectrum hymale Orchid
下载PDF
Effects of Arbuscular Mycorrhizal Fungi on the Physiology and Saponin Synthesis of Paris polyphylla var. yunnanensis at Different Nitrogen Levels
9
作者 Can Huang Shubiao Qian +5 位作者 Xiaoxian Li Xiahong He Shuhui Zi Congfang Xi Rui Shi Tao Liu 《Journal of Botanical Research》 2023年第3期1-26,共26页
Arbuscular mycorrhizal fungi(AMF)are important members of the plant microbiome and affect the uptake and transfer of mineral elements by forming a symbiotic relationship with plant roots.Nitrogen(N),as an important mi... Arbuscular mycorrhizal fungi(AMF)are important members of the plant microbiome and affect the uptake and transfer of mineral elements by forming a symbiotic relationship with plant roots.Nitrogen(N),as an important min­eral element,can directly affect plant growth and development at different N levels.It has been confirmed that inoc­ulation with AMF can improve the efficiency of N utilization by plants.However,there are still fewer reports on the dynamic relationship between arbuscular mycorrhizal and plant secondary metabolites at different nitrogen levels.In this experiment,the physiological indexes and genes related to saponin synthesis were determined by applying differ­ent concentration gradients of nitrogen to the medicinal plant P.polyphylla var.yunnanensis infested by AMF as the test material.It was found that nitrogen addition increased the biomass,chlorophyll content,and nutrient content of above-and below-ground plant parts and increased the content of saponin content of P.polyphylla var.yunnanensis to some extent,but AMF inoculation increased the saponin content of P.polyphylla var.yunnanensis more significantly.AMF inoculation also promoted the expression of genes related to the saponin synthesis pathway,including 3-hy­droxy-3-methylglutaryl coenzyme A synthase(HMGS),squalene epoxidase 1(SE1),and cycloartenol synthase(CAS),which is in according with the accumulation of saponin in plants.It also may increase the saponin content of AMF plants by altering the expression of P450s and UGTs related to saponin synthesis. 展开更多
关键词 NITROGEN Arbuscular mycorrhizal fungi SAPONIN P.polyphylla var.yunnanensis
下载PDF
Dynamics of arbuscular mycorrhizal fungi associated with desert ephemeral plants in Gurbantunggut Desert 被引量:3
10
作者 Tao ZHANG ChangYan TIAN +2 位作者 Yu SUN DengSha BAI Gu FENG 《Journal of Arid Land》 SCIE 2012年第1期43-51,共9页
Previous studies documented that most desert plants can be colonized by arbuscular mycorrhizal (AM) fungi, however, little is known about how the dynamics of AM fungi are related to ephemerals in desert ecosystems. ... Previous studies documented that most desert plants can be colonized by arbuscular mycorrhizal (AM) fungi, however, little is known about how the dynamics of AM fungi are related to ephemerals in desert ecosystems. The dynamics of AM fungi with desert ephemerals were examined to determine the effects of host plant life stages on the development of AM fungi. Mean colonization of ephemeral annual plants was 45% lower than that of ephemeral perennial plants. The colonizations were much higher in the early part of the growing season than in later parts, peaking at flowering times. The phenology of AM fungi in root systems varied among different ephem- erals. The density of AM fungal spores increased with the development of ephemeral annual plants, reached its maximum at flowering times, and then plateaued about 20 days after the aboveground senescence. A significant positive correlation was found between AM fungi spore density and biomass of ephemeral annual plants. The life cycles of AM fungi associated with desert ephemerals were very shod, being about 60-70 days. Soil temperature and water content had no direct influence on the development of AM fungal spores. We concluded that the development of AM fungi was in response to desert ephemeral phenology and life history strategy. 展开更多
关键词 arbuscular mycorrhizal fungi Gurbantunggut Desert ephemeral annual plants ephemeral perennial plants DYNAMICS PHENOLOGY mycorrhizal colonization spore density
下载PDF
Diversity of mycorrhizal fungi and soil indicative species in coastal plantations of northeast Brazil
11
作者 Olmar Baller Weber Maria Cátia Barroso da Silva +3 位作者 Cristiane Figueira da Silva Diva Correia Deborah dos Santos Garruti Marcela Claudia Pagano 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第3期1203-1211,共9页
The aim of this work was to evaluate arbuscular mycorrhizal(AM)fungi as soil indicators and the mycorrhization of native and exotic tree species planted in the Acaraúbasin,a transition area from the coast to the ... The aim of this work was to evaluate arbuscular mycorrhizal(AM)fungi as soil indicators and the mycorrhization of native and exotic tree species planted in the Acaraúbasin,a transition area from the coast to the Brazilian semiarid region.Plots with 6-year-old trees of four native and three non-native species as well as one non-forested area were evaluated in terms of the diversity of AM fungi in the mycorrhizosphere and the root colonization by AM and ectomycorrhizal(EcM)fungi.Twenty-four AM fungi were identified;Claroideoglomus etunicatum,Glomus sinuosum,Paraglomus albidum,Acaulospora laevis,and Acaulospora brasiliensis were abundant in the forest soil.Diversity,dominance,evenness and richness indices of AM fungi were higher in plots with native trees.All root samples were colonized by AM fungi and only A nadenanthera colubrina,Acacia mangium,Casuarina equisetifolia and Eucalyptus urophylla formed associations with EcM fungi.Acaulospora morphotypes served as soil indicators for coverings with the native species Astronium fraxinifolium and Colubrina glandulosa.Exotic species may favor the proliferation of rarer AM fungi.These fungi–plant relationships may be important in the management of forest systems,and the evidence with mycorrhizal associations allows the inclusion of Brazilian species in tropical reforestation. 展开更多
关键词 Acacia mangium Arbuscular mycorrhizal fungi Brazilian species Casuarina equisetifolia Ectomycorrhizal fungi Eucalyptus urophylla
下载PDF
Mycorrhizal Inoculation Effect on the Forage Cowpea Biomass Production in Burkina Faso
12
作者 Hadou Haro Kadidia Semdé +1 位作者 Kadidiata Bahadio Souleymane Ganaba 《American Journal of Plant Sciences》 2020年第11期1714-1722,共9页
In Burkina Faso, breeding occupies an important place in the country’s economy, but is based essentially on the exploitation <span style="font-family:Verdana;">of the </span><span style="... In Burkina Faso, breeding occupies an important place in the country’s economy, but is based essentially on the exploitation <span style="font-family:Verdana;">of the </span><span style="font-family:Verdana;">natural resources (pasture) which remains limited in extent due to the extension of land cultivated by agricultural practices extensive. Food is one of the most important limiting factors in animal production, hence the need to develop mechanisms to improve the production of food resources. This study is a contribution to fodder production improvement. In this study, cowpea was grown in a greenhouse for 60 days and inoculated with two inocula of arbuscular mycorrhizal fungi. The growth parameters were measured at 30 and 60 days after sowing. Shoot, root and total biomass were evaluated 60 days after sowing. The results show Yac 2 mix inoculum improves height</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">growth (95.5%), height relative growth rate (525%), collar diameter (138%), collar diameter relative growth rate (328.57%), shoot biomass (396.3%), root biomass by (205.66%), total biomass by (320%), total nitrogen of aerial parts (92.39%) and total phosphorus of aerial parts (143.48%) compared to control.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Yac 2 mix appears the most effective of all inoculum used in this study.</span> 展开更多
关键词 Forage Cowpea mycorrhizal Inoculation Arbuscular mycorrhizal Fungi Burkina Faso
下载PDF
Arbuscular mycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in northwestern China 被引量:12
13
作者 QIU Lang BI Yinli +3 位作者 JIANG Bin WANG Zhigang ZHANG Yanxu Yryszhan ZHAKYPBEK 《Journal of Arid Land》 SCIE CSCD 2019年第1期135-147,共13页
In semi-arid region of northwestern China, underground mining subsidence often results in decreased vegetation coverage, impoverishment of soil fertility and water stress. In addition, the physical-chemical and biolog... In semi-arid region of northwestern China, underground mining subsidence often results in decreased vegetation coverage, impoverishment of soil fertility and water stress. In addition, the physical-chemical and biological properties of soil also change, resulting in more susceptible to degradation. In particular, subsidence causes disturbance of the symbioses of plant and microbe that can play a beneficial role in the establishment of vegetation communities in degraded ecosystems. The objective of this study was to evaluate the effects of revegetation with exotic arbuscular mycorrhizal fungi(AMF) inoculum on the chemical and biological properties of soil over time in mining subsidence areas. Soils were sampled at a depth up to 30 cm in the adjacent rhizosphere of Amorpha fruticose Linn. from five reclaimed vegetation communities in northwestern China. In August 2015, a field trial was set up with five historical revegetation experiments established in 2008(7-year), 2011(4-year), 2012(3-year), 2013(2-year) and 2014(1-year), respectively. Each reclamation experiment included two treatments, i.e., revegetation with exotic AMF inoculum(AMF) and non-AMF inoculum(the control). Root mycorrhizal colonization, glomalin-related soil protein(GRSP), soil organic carbon(SOC), soil nutrients, and enzyme activities were also assessed. The results showed that mycorrhizal colonization of inoculated plants increased by 33.3%–163.0% compared to that of non-inoculated plants(P<0.05). Revegetation with exotic AMF inoculum also significantly improved total GRSR(T-GRSP) and easily extracted GRSP(EE-GRSP) concentrations compared to control, besides the T-GRSP in 1-year experiment and the EE-GRSP in 2-year experiment. A significant increase in SOC content was only observed in 7-year AMF reclaimed soils compared to non-AMF reclaimed soils. Soil total N(TN), Olsen phosphorus(P) and available potassium(K) were significantly higher in inoculated soil after 1–7 years of reclamation(except for individual cases), and increased with reclamation time(besides soil Olsen P). The exotic AMF inoculum markedly increased the average soil invertase, catalase, urease and alkaline phosphatase by 23.8%, 21.3%, 18.8% and 8.6%, respectively(P<0.01), compared with the control. Root mycorrhizal colonization was positively correlated with soil parameters(SOC, TN and soil available K) and soil enzyme activities(soil invertase, catalase, urease and alkaline phosphatase) in both AMF and non-AMF reclaimed soils(P<0.05), excluding availableK in non-AMF reclaimed soils. T-GRSP(P<0.01) and EE-GRSP(P<0.05) were significantly correlated with the majority of edaphic factors, except for soil Olsen P. The positive correlation between root mycorrhizal colonization and available K was observed in AMF reclaimed soils, indicating that the AMF reclaimed soil with a high root mycorrhizal colonization could potentially accumulate available K in soils. Our findings concluded that revegetation with exotic AMF inoculum influenced soil nutrient availability and enzyme activities in the semi-arid ecosystem, suggesting that inoculating AMF can be an effective method to improve soil fertility and support restoration of vegetation communities under poor conditions like soil nutrient deficiency and drought. 展开更多
关键词 REVEGETATION mycorrhizal COLONIZATION glomalin-related soil proteins ARBUSCULAR mycorrhizal fungi coal mining Amorpha fruticose
下载PDF
Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.) 被引量:19
14
作者 HUA Jianfeng LIN Xiangui +2 位作者 YIN Rui JIANG Qian SHAO Yufang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第9期1214-1220,共7页
A pot experiment was conducted to study the effects of arbuscular mycorrhizal (AM) fungi (from contaminated or uncontaminated soils) on arsenic (As) uptake of tobacco (Nicotiana tabacurn L.) in As-contaminated... A pot experiment was conducted to study the effects of arbuscular mycorrhizal (AM) fungi (from contaminated or uncontaminated soils) on arsenic (As) uptake of tobacco (Nicotiana tabacurn L.) in As-contaminated soil. Mycorrhizal colonization rate, dry weight, As and P uptake by plants, concentrations of water-extractable As and As fractions were determined. A low mycorrhizal colonization rate (〈 25%) was detected. Our research indicated that AM fungi isolated from polluted soils were no more effective than those from unpolluted soils when grown in symbiosis with tobacco. No significant differences were observed in roots and stalks dry weights among all treatments. Leaves and total plant dry weights were much higher in Glomus versiforme treatment than that in control treatment. As contents in roots and stalks from mycorrhizal treatments were much lower than that from control treatment. Total plant As content exhibited the same trend. P concentrations in tobacco were not affected by colonization, nor were stalks, leaves and total plant P contents. Roots P contents were remarkably lower in HN treatments than in other treatments. Meanwhile, decreased soil pH and lower water-extractable As concentrations and higher levels of As fraction bound to well-crystallized hydrous oxides of Fe and AI were found in mycorrhizal treatments than in controls. The protective effect of mycorrhiza against plant As uptake may be associated with changes in As solubility mediated by changing soil pH. These results indicated that under As stress, proper mechanisms employed by AM fungi can protect tobacco against As uptake. Results confirmed that AM fungi can play an important role in food quality and safety. 展开更多
关键词 arbuscular mycorrhizal fungi ARSENIC TOBACCO soil pH
下载PDF
Effect of Inoculation with Arbuscular Mycorrhizal Fungus on Nitrogen and Phosphorus Utilization in Upland Rice-Mungbean Intercropping System 被引量:11
15
作者 XIAO Tong-jian YANG Qing-song RAN Wei XU Guo-hua SHEN Qi-rong 《Agricultural Sciences in China》 CAS CSCD 2010年第4期528-535,共8页
The effect of arbuscular mycorrhiza fungi (AMF) on plant growth and nutrition utilization in upland rice and mungbean intercropping system was studied. A pot experiment was conducted in the greenhouse and AMF coloni... The effect of arbuscular mycorrhiza fungi (AMF) on plant growth and nutrition utilization in upland rice and mungbean intercropping system was studied. A pot experiment was conducted in the greenhouse and AMF colonization rates of rice and mungbean roots, plant nutrient contents, the ability of nitrogen fixation, and nutrient contents changed in the soil were analyzed. The results were obtained as follows: the rates of AMF colonization of rice and mungbean roots were reached to 14.47 and 92.2% in intercopping system, and increased by 4.11 and 11.95% compared with that of in monocropping; the nirtrogen contents of mungbean and rice were increased by 83.72 and 64.83% in shoots, and 53.76 and 41.29% in roots, respectively, while the contents of iron in shoot and root of mungbean were increased by 223.08 and 60.19%, respectively. In the intercropping system with inoculation of AMF, the biomass of mungbean increased by 288.8%. However, the biomass of rice was not significantly changed among all treatments with or without inoculation of AMF recorded. The number and dry weight of nodules were significantly increased either when mungbean was intercropped with rice or inoculated with AMF. When compared with that of monocropping without AMF inoculation, the contents of nitrogen, phosphorus and iron in nodules of intercropping mungbean with inoculation increased by 80.14, 69.54 and 39.62%, respectively. Additionally, intercropping with AMF inoculation significantly increased soil nitrogen content, but reduced soil phosphorus content. We concluded that upland rice-mungbean intercropping system and inoculation with AMF improved the nutrient uptake, the ability of nitrogen fixation and the growth of mungbean. 展开更多
关键词 MUNGBEAN rice arbuscular mycorrhizal fungi (AMF) INTERCROPPING NITROGEN PHOSPHORUS iron root nodule
下载PDF
Arbuscular mycorrhizal fungi combined with exogenous calcium improves the growth of peanut(Arachis hypogaea L.)seedlings under continuous cropping 被引量:9
16
作者 CUI Li GUO Feng +6 位作者 ZHANG Jia-lei YANG Sha MENG Jing-jing GENG Yun WANG Quan LI Xin-guo WAN Shu-bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第2期407-416,共10页
The growth and yield of peanut are negatively affected by continuous cropping.Arbuscular mycorrhizal fungi(AMF)and calcium ions(Ca^(2+))have been used to improve stress resistance in other plants,but little is known a... The growth and yield of peanut are negatively affected by continuous cropping.Arbuscular mycorrhizal fungi(AMF)and calcium ions(Ca^(2+))have been used to improve stress resistance in other plants,but little is known about their roles in peanut seedling growth under continuous cropping.This study investigated the possible roles of the AMF Glomus mosseae combined with exogenous Ca^(2+)in improving the physiological responses of peanut seedlings under continuous cropping.G.mosseae combined with exogenous Ca^(2+)can enhance plant biomass,Ca^(2+)level,and total chlorophyll content.Under exogenous Ca^(2+)application,the F_v/F_m in arbuscular mycorrhizal(AM)plant leaves was higher than that in the control plants when they were exposed to high irradiance levels.The peroxidase,superoxide dismutase,and catalase activities in AM plant leaves also reached their maximums,and accordingly,the malondialdehyde content was the lowest compared to other treatments.Additionally,root activity,and content of total phenolics and flavonoids were significantly increased in AM plant roots treated by Ca^(2+)compared to either G.mosseae inoculation or Ca^(2+)treatment alone.Transcription levels of AhCaM,AhCDPK,AhRAM1,and AhRAM2 were significantly improved in AM plant roots under exogenous Ca^(2+)treatment.This implied that exogenous Ca^(2+)might be involved in the regulation of G.mosseae colonization of peanut plants,and in turn,AM symbiosis might activate the Ca^(2+)signal transduction pathway.The combination of AMF and Ca^(2+)benefitted plant growth and development under continuous cropping,suggesting that it is a promising method to cope with the stress caused by continuous cropping. 展开更多
关键词 ARACHIS HYPOGAEA L. ARBUSCULAR mycorrhizal fungi continuous CROPPING exogenous calcium
下载PDF
Biodiversity of arbuscular mycorrhizal fungi in different trees of madhupur forest, Bangladesh 被引量:9
17
作者 P. P. Dhar M. A. U. Mridha 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第3期201-205,共5页
Roots and rhizosphere soils of Acacia auriculiformis A. Cunn. ex Benth., A. mangium Wild., Artocarpus heterophyUus Lamk. C., Dalbergia sissoo Roxb. ex A. P. D., Eucalyptus camaldulensis Dehnn., Hevea brasiliensis (Wi... Roots and rhizosphere soils of Acacia auriculiformis A. Cunn. ex Benth., A. mangium Wild., Artocarpus heterophyUus Lamk. C., Dalbergia sissoo Roxb. ex A. P. D., Eucalyptus camaldulensis Dehnn., Hevea brasiliensis (Wild. ex Juss) Muell. Arg., Swietenia macrophylla King. and Tectona grandis L. were collected from different locations of Madhupur forest area to study the biodiversity of Arbuscular Mycorrhizal (AM) fungal colonization and spore population. All the plants showed AM colonization. Out of eight selected plants, mycelial colonization was lowest in the roots of A. heterophyllus (22%) and the highest was in the roots of H. brasiliensis (78%). Mycelial intensity was observed poor (25%-77%) and moderate (23%-57%) in all plants species and abundant (11%-40%) was in most of the plant species. Vesicular colonization was observed in five plant species. The lowest was recorded in E. camaldulensis (4%) and the highest was in H. brasiliensis (21%). Poor (24%-56%), moderate (16%-100%) and abundant (11%-40%) type of vesicular intensity were observed. Arbuscular colonization was observed in three plants. The highest was in A. mangium (72%) and the lowest was in S. macrophylla (17%). Arbuscular intensity was recorded as poor (12%-44%), moderate (22%-100%) and abundant (4%-47%). The highest AM fungal spore population was in A. auriculiformis (714) and the lowest was in D. sissoo (102). Five AM fungal genera were recorded. Glomus was found to be dominant. A few spores remained unidentified. Significant correlation was observed between percent coloniza- tion and spore population. The results of the present study indicate the occurrence of AM fungi and the mycotrophism of the plants of Madhupur forest area and the applicability of AM technology in the forest management of Madhupur forest. 展开更多
关键词 BIODIVERSITY Arbuscular mycorrhizal fungi Fungal colonization Rhizosphere soils Tree species.
下载PDF
Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass,phosphorus uptake and concentration of root secondary metabolites 被引量:13
18
作者 HongLing LIU Yong TAN +5 位作者 Monika NELL Karin ZITTER-EGLSEER Chris WAWSCRAH Brigitte KOPP ShaoMing WANG Johannes NOVAK 《Journal of Arid Land》 SCIE CSCD 2014年第2期186-194,共9页
Arbuscular mycorrhizal (AM) fungi penetrate the cortical cells of the roots of vascular plants, and are widely distributed in soil. The formation of these symbiotic bodies accelerates the absorption and utilization ... Arbuscular mycorrhizal (AM) fungi penetrate the cortical cells of the roots of vascular plants, and are widely distributed in soil. The formation of these symbiotic bodies accelerates the absorption and utilization of min- eral elements, enhances plant resistance to stress, boosts the growth of plants, and increases the survival rate of transplanted seedlings. We studied the effects of various arbuscular mycorrhizae fungi on the growth and devel- opment of licorice (Glycyrrhiza glabra). Several species of AM, such as Glomus mosseae, Glomus intraradices, and a mixture of fungi (G. mosseae, G intraradices, G. cladoideum, G microagregatum, G caledonium and G. etunica- tum) were used in our study. Licorice growth rates were determined by measuring the colonization rate of the plants by the fungi, plant dry biomass, phosphorus concentration and concentration of secondary metabolites. We estab- lished two cloned strains of licorice, clone 3 (C3) and clone 6 (C6) to exclude the effect of genotypic variations. Our results showed that the AM fungi could in fact increase the leaf and root biomass, as well as the phosphorus con- centration in each clone. Furthermore, AM fungi significantly increased the yield of certain secondary metabolites in clone 3. Our study clearly demonstrated that AM fungi play an important role in the enhancement of growth and development of licorice plants. There was also a significant improvement in the secondary metabolite content and yield of medicinal compounds from the roots. 展开更多
关键词 LICORICE arbuscular mycorrhizal fungi PHOSPHORUS medical compounds
下载PDF
Natural Colonization of Rice by Arbuscular Mycorrhizal Fungi in Different Production Areas 被引量:5
19
作者 Lina BERNAOLA Grace CANGE +3 位作者 Michael O.WAY Jeffrey GORE Jarrod HARDKE Michael STOUT 《Rice science》 SCIE CSCD 2018年第3期169-174,共6页
Interactions between plants and soil microorganisms can influence the other interactions in which plants participate, including interactions with herbivores. Many fungi, including arbuscular mycorrhizal fungi(AMF), fo... Interactions between plants and soil microorganisms can influence the other interactions in which plants participate, including interactions with herbivores. Many fungi, including arbuscular mycorrhizal fungi(AMF), form symbiotic relationships with the roots they inhabit, and potentially alter defense against pests. The objective of this study was to document the extent of root colonization by AMF on non-flooded rice plants grown under conditions typical of commercial fields. We hypothesized that AMF naturally colonized rice plants in different rice producing field locations. Rice plant samples were collected from areas across the southern United States, including Texas, Mississippi, Arkansas and two research stations in Louisiana. We quantified the amount of AMF colonization in insecticide-free rice plants over three consecutive years(2014–2016). The results revealed natural colonization of AMF in all rice producing areas. In all the three years of survey, rice-AMF associations were the greatest in Arkansas followed by Mississippi and Texas. This research will help draw attention to natural colonization of AMF in rice producing areas that can impact future rice research and production by facilitating agricultural exploitation of the symbiosis. 展开更多
关键词 ARBUSCULAR mycorrhizal FUNGUS RICE ROOT COLONIZATION soil quality agriculture
下载PDF
The Effects of Arbuscular Mycorrhizal Fungi on Reactive Oxyradical Scavenging System of Tomato Under Salt Tolerance 被引量:10
20
作者 HUANG Zhi HE Chao-xing +2 位作者 HE Zhong-qun ZOU Zhi-rong ZHANG Zhi-bin 《Agricultural Sciences in China》 CSCD 2010年第8期1150-1159,共10页
The effects of arbuscular mycorrhizal fungi (AMF), Glomus mosseae, on oxygen radical scavenging system of tomato under salt stress were studied in potted culture experiments. The response of tomato (Lycopersieon es... The effects of arbuscular mycorrhizal fungi (AMF), Glomus mosseae, on oxygen radical scavenging system of tomato under salt stress were studied in potted culture experiments. The response of tomato (Lycopersieon eseulentum L.) cultivar Zhongza 9 seedlings with AMF inoculation and control to salt stress (0, 0.5 and 1.0% NaCl solution, respectively) was investigated. The results showed that the salt stress significantly reduced the dry matter content of roots, stems and leaves, and also the leaf area as compared with the control treatment. However, arbuscular mycorrhizal-inoculated (AM) significantly improved the dry matter and the leaf area in the salt-stressed plants. The effect of AMF on dry matter was more pronounced in aerial bromass than in root biomass which might be due to AM colonization. The activities of SOD, POD, ASA-POD, and CAT in leaves and roots of mycorrhizal and non-mycorrhizal treatment of tomato plants were increased and had different rules under different NaCl concentrations (solution of 0, 0.5 and 1% NaCl), but all enzymes had a rise in the beginning of treatment under salt stress conditions. The AMF did not change the rule of tomato itself under salt stress, but AMF increased these enzyme activities in different levels. The AMF treatment significantly increased SOD, POD and ASA-POD activities in leaves and roots, whereas it had little effects on CAT in root. O2- production rate and MDA content in leaves increased continuously, which showed a positive line correlation with salt stress concentration. O2- production rate and MDA content in tomato plants significantly decreased by AM treatment compared with nonmycorrhizal treatment. In conclusion, AM could alleviate the growth limitations imposed by saline conditions, and thereby play a very important role in promoting plant growth under salt stress in tomato. 展开更多
关键词 arbuscular mycorrhizal fungi (AMF) OSMOREGULATION salt stress TOMATO
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部